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Introduction

= Classical themes in industrial engineering
Production planning
Downstream logistics

= Mineral/metallurgical extraction
Particular structures
More than just plugging numbers into models

= Judgment and expertise to link the two
What to solve
How to solve




Introduction

= Part 1:

Strategic metallurgical production planning under
geostatistical uncertainty

= Part 2:
Short-term smelter production scheduling

(Automatic scheduling of Altonorte operations using
greedy algorithms)
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Part 1:

STRATEGIC METALLURGICAL
PRODUCTION PLANNING UNDER
GEOLOGICAL UNCERTAINTY




Overview

= Stochastic mine planning

= Centralized vs localized decision-making

= Bi-level approach to downstream optimization




Stochastic mine planning

= Capture geostatistical uncertainty
Repeated conditional simulations

Extraction schedule

Orebody simulations

= Constrained optimization
Maximize NPV € (incomplete picture)
Respect constraints (capacity, blending, etc.)

= Extend scope of optimization??
(centralization of decision-making)




Centralized vs localized DM
= Typical concern in industrial engineering

= Balance two perspectives
1. Globalized solutions bring gains

max :f (x,yo)} < max {f(x,}/)}

X

2. Local decision-makers to react to changing
circumstances (“local manageability”)

Low hanging fruit: Reengineering balance between
centralization and localization

= Unmanaged variability = overengineering of
downstream operations




Metaheuristics

= Current application of metaheuristics
Compare two potential extraction plans

Compare f (X)) and f (X)
Update data structures accordingly
Continue searching for improvements...

= Downstream operations may be integrated
within objective function f.




Bi-level optimization

f(x)= Max [f (X,y) }

y
An optimization within an optimization

= Current approach
f (x)is NPV of x Generic allocation of } Overengineered
: boptimal
f (x') is NPV of X’ dowstream resources (suboptimal)

= Bi-level approach

f (X) is NPV of X, given an optimal allocation of downstream
resources for y(X)

f (X') is NPV of X', given optimal allocation of downstream
resources for y(X’)




Bi-level optimization

= Quter optimization i

Vast solution space
(discrete block orderings)

Subject to geological uncertainty

— Metaheuristics

N

—_

* |nner optimization
Continuous solution space
Dominated by mass flows

Linear program
— (with embedded
flow network)

Subject to geological uncertainty |

= Two proposals for bi-level formulations



Role of Linear Program
= Automate decisions for stockpiling v/s processing
When to send material to stockpiles?
When to draw material from stockpiles?
(Classical industrial engineering theme)

Rt L

(Network flow problem)

= Allocation of resources

Divide plant time between several modes of operation
Divide transport routes between several product streams

= Evaluate proposed mine extraction plan (f)



Second Proposal

Preprocessing
Generate set of orebody simulations

Generate initial mine plan

Evaluate initial mine plan using LP < (inner optimization)

Loop

Modify mine plan according to metaheuristic
Evaluate mine plan using LP < (inner optimization)
Update data structures accordingly

Postprocessing
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Closing remarks

= Mine-to-plant production scheduling is an “easy”
problem, except for the supply source

* This should be reflected in the computational
approach

= Resist the urge to over-centralize decision-
making, given the geological uncertainty
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e Introduction
 Altonorte Operations

e Greedy Programming

e Extensions/Future Work
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Introduction

e Common for smelters to use manual
daily scheduling techniques

e Two problems:

1. Suboptimality (w.r.t. any particular objective)
2. Limits accuracy of simulation - decicion-making

 Altonorte has taken a first step

— On par with Chuquicamata (Pradenas et al., 2006)

- (we have developed more sophisticated algorithms, but

not yet implemented)
Universidad Catdlica del Norte
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Altonorte Operations

Noranda Peirce-Smith Refining/
Reactor Converting Casting

e Level of Noranda Reactor : continuous} Semi-Discrete
e Discrete PSC batches Dynamics

e The Peirce-Smith Converter Problem
— Scientific Basis for OR of Cu and Ni smelting

Universidad Catdlica del Norte
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Altonorte Operations
e PSC at Altonorte

— Seven step cycle

1. Initial charging (4 to 7 ladles, depending on which converter)
2. Blow

3. Charge an additional ladle

4. Blow

5. Charge an additional ladle

6. Final blow

7. Final skim and discharge

— High matte grade (~73%), so Cu-Blow
dominates

- Different sizes of converters

U Universidad Catodlica del Norte




Altonorte Operations
e PSC at Altonorte

- Coordination with Noranda Reactor
— Merge steps

1-5: Initial charge, blow, charge additional ladle, blow, charge
additional ladle

6-7: Final blow, skim, discharge

—
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— After Step 5, reactor is free to charge
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Altonorte Operatlons
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Greedy Programming

* Integrated into combinatorial search

- Find converter sequence that maximizes
number of converted ladles in schedule

e Consider the following restrictions:

A) Initial conditions

B) Availability of converter

C) Availability of reactor (consider production rate of reactor)
D) Offgas handling system

Ordering
(i-k)
Fregdhy —>Schedule
Restrictions Algorithm

(A,B,C,D)
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Greedy Programming

PSC i
PSC j
PSC k

e Given an ordering (/~fk),

— cursor advances from left to right

— places the next cycle as early as possible
(while respecting restrictions)

“Greedy” - cursor only looks forward

Universidad Catdlica del Norte
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Greedy Programming

e Mathematical formalism:

— Consider ordering (/~fk)
— Consider the four restrictions A, B, C, D

t, = starting time of first cycle of the new schedule
=max{ t*, tB ¢ P}

where tA = earliest starting time for first cycle not to violate A
t,B = earliest starting time for first cycle not to violate B
t,© = earliest starting time for first cycle not to violate C
t,P = earliest starting time for first cycle not to violate D

Result: t;is the earliest time which satisfies all four conditions

Universidad Catodlica del Norte
ver mas alla




Greedy Programming

e Mathematical formalism:
- Similarly,
t, = starting time of second cycle of the new schedule
=max{ t*, tB % tP }

— Calculation of (1,5 t,°, t,°) takes into account the first cycle
(thus second cycle does not conflict with first cycle)

— More generally,
t, = starting time of I™" cycle of the new schedule

=max{ t*, t8 % tP }

— Calculation of (18, t°, tP) takes into account the previous
cycles, 1,23, ... (I-1)
(thus I" cycle does not conflict with previous cycles)
Universidad Catélica del Norte
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Extensions/Future Work

e Paper also describes the management
of Refining/Casting

* More advanced algorithms

— Alternate objectives (modes of operation)

e Convert as much matte as possible
e Reduce a certain class of WIP
e Use as little energy as possible, etc.

e Operations Research of Cu Smelting
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