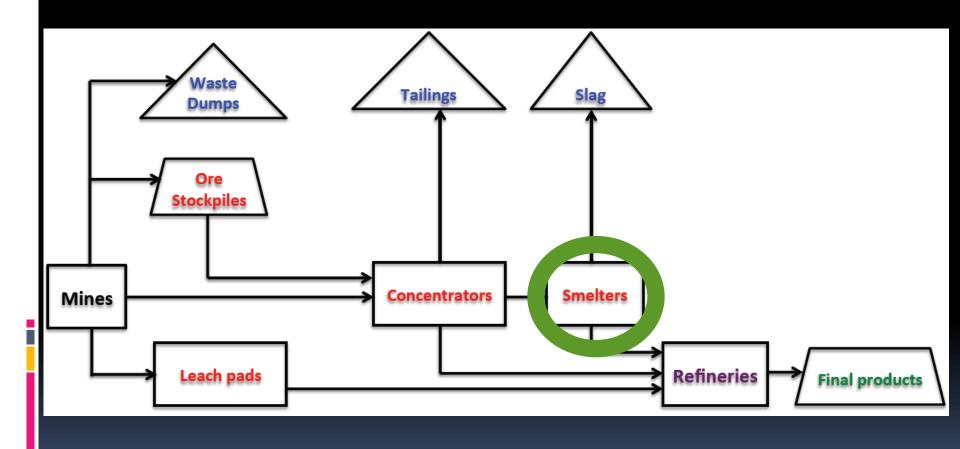
## MINE TO PLANT PRODUCTION SCHEDULING

Prof. Alessandro Navarra Department of Industrial Engineering Universidad Católica del Norte


- Classical themes in <u>industrial engineering</u>
  - Production planning
  - Downstream logistics
- Mineral/metallurgical extraction
  - Particular structures
  - More than just plugging numbers into models
- Judgment and expertise to link the two
  - What to solve
  - How to solve

Part 1:

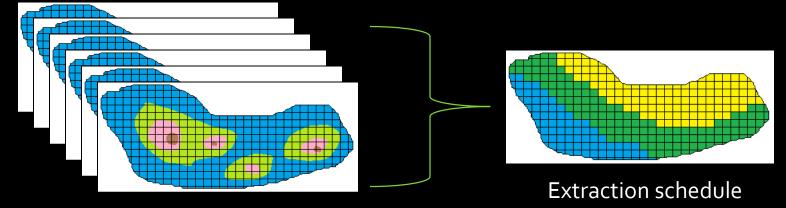
 Strategic metallurgical production planning under geostatistical uncertainty

Part 2:

Short-term smelter production scheduling
 (Automatic scheduling of <u>Altonorte operations</u> using greedy algorithms)



Part 1:


## STRATEGIC METALLURGICAL PRODUCTION PLANNING UNDER GEOLOGICAL UNCERTAINTY

### Overview

- Stochastic mine planning
- Centralized vs localized decision-making
- Bi-level approach to <u>downstream optimization</u>

## Stochastic mine planning

- Capture geostatistical uncertainty
  - Repeated conditional simulations



Orebody simulations

Constrained optimization

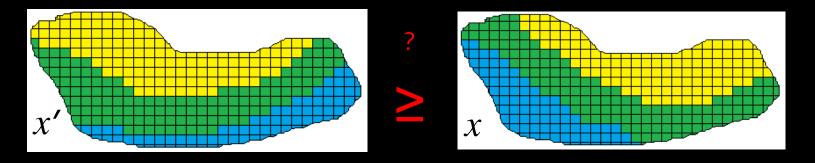
 Maximize NPV 
 (incomplete picture)
 Respect constraints (capacity, blending, etc.)

 Extend scope of optimization??

 (centralization of decision-making)

## Centralized vs localized DM

- Typical concern in industrial engineering
- Balance two perspectives
  - 1. Globalized solutions bring gains


$$\max_{x} \left[ f(x, y_{o}) \right] \leq \max_{x, y} \left[ f(x, y) \right]$$

- 2. Local decision-makers to react to changing circumstances ("local manageability")
- Low hanging fruit: Reengineering balance between centralization and localization
- Unmanaged variability 

   overengineering of downstream operations

### Metaheuristics

- Current application of metaheuristics
  - Compare two potential extraction plans



- Compare f(x') and f(x)
- Update data structures accordingly
- Continue searching for improvements...
- <u>Downstream operations</u> may be integrated within objective function *f*.

# Bi-level optimization $f(x) = \max_{y} \left[ f(x,y) \right]$

An <u>optimization</u> within an <u>optimization</u>

#### Current approach

*f*(*x*) is NPV of *x f*(*x*') is NPV of *x*'

Generic allocation of dowstream resources

Overengineered (suboptimal)

#### Bi-level approach

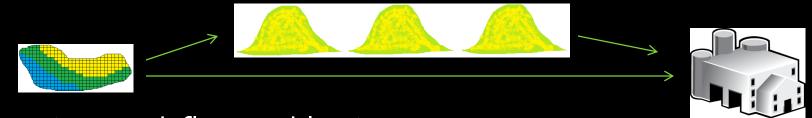
- f(x) is NPV of x, given an <u>optimal</u> allocation of downstream resources for y(x)
- f(x') is NPV of x', given <u>optimal</u> allocation of downstream resources for y(x')

### Bi-level optimization

- Outer optimization
  - Vast solution space
    - (discrete block orderings)
  - Subject to geological uncertainty

#### Inner optimization

- Continuous solution space
- Dominated by mass flows
- Subject to geological uncertainty


Linear program (with embedded flow network)

Metaheuristics

Two proposals for bi-level formulations

## Role of Linear Program

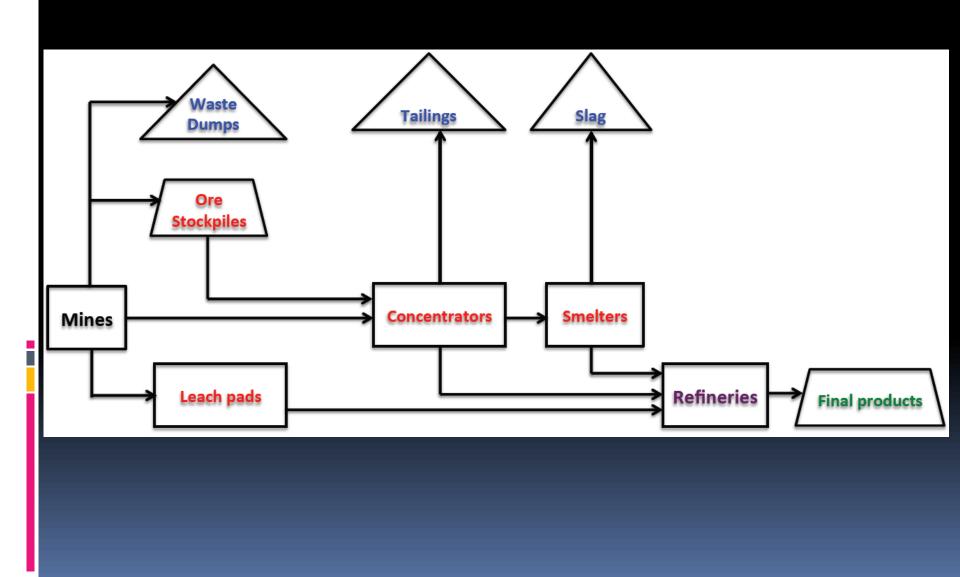
- Automate decisions for stockpiling v/s processing
  - When to <u>send material</u> to stockpiles?
  - When to <u>draw material</u> from stockpiles?
  - (Classical industrial engineering theme)



- (Network flow problem)
- Allocation of resources
  - Divide <u>plant time</u> between several <u>modes of operation</u>
  - Divide transport routes between several product streams
- Evaluate proposed mine extraction plan (f)

## Second Proposal

#### <u>Preprocessing</u>


Generate set of orebody simulations

- Generate initial mine plan

#### <u>Loop</u>

- Modify mine plan according to metaheuristic
- Update data structures accordingly

#### <u>Postprocessing</u>



### Closing remarks

- Mine-to-plant production scheduling is an "easy" problem, except for the supply source
- This should be reflected in the computational approach
- Resist the urge to over-centralize decisionmaking, given the geological uncertainty



#### Automatic Scheduling of Altonorte Operations Using Greedy Algorithms

Prof. Alessandro Navarra Universidad Católica del Norte

Oscar Mendoza Altonorte Smelter, Glencore-Xstrata



## Agenda

- Introduction
- Altonorte Operations
- Greedy Programming
- Extensions/Future Work



 Common for smelters to use <u>manual</u> <u>daily scheduling</u> techniques

### Two problems:

- 1. Suboptimality (w.r.t. any particular objective)
- **2.** Limits accuracy of simulation  $\rightarrow$  decicion-making

### Altonorte has taken a first step

- On par with Chuquicamata (Pradenas et al., 2006)
- (we have developed more sophisticated algorithms, but not yet implemented)





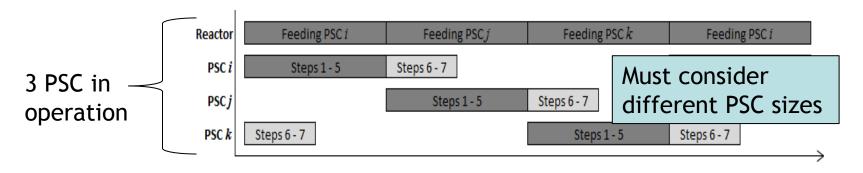
- Level of Noranda Reactor : continuous
   Semi-Discrete
- Discrete PSC batches

- The Peirce-Smith Converter Problem
  - Scientific Basis for OR of Cu and Ni smelting



**Dynamics** 

- PSC at Altonorte
  - Seven step cycle
    - **1. Initial charging** (4 to 7 ladles, depending on which converter)
    - 2. Blow
    - 3. Charge an additional ladle
    - 4. Blow
    - 5. Charge an additional ladle
    - 6. Final blow
    - 7. Final skim and discharge
  - High matte grade (~73%), so Cu-Blow dominates
  - Different sizes of converters




- PSC at Altonorte
  - Coordination with Noranda Reactor

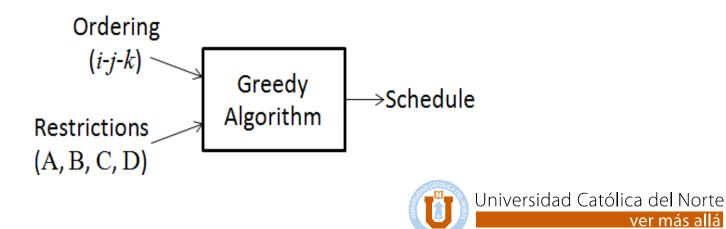
#### - Merge steps

1-5: Initial charge, blow, charge additional ladle, blow, charge additional ladle

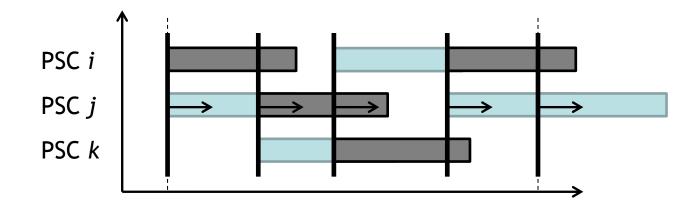
#### 6-7: Final blow, skim, discharge



After Step 5, reactor is free to charge another converter




|                              | <b>20</b> 21 22 23 0 1 <del>2 3</del>                        | <u>3</u> /4 5 6 /7 8 9 10 # 12 13 14 15 16 17 18 19 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Secador                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Tmh/Hr                       | 173 173 173 173 173 174 173 1                                | 173 173 169 159 173 160 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Reactor                      |                                                              | , <b>No and Constant and Const</b> |      |
| Flujo Soplado x1000          |                                                              | 52 58 56 52 53 52 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| %02                          | 45,5 45,7 44,8 44,3 43,4 43,3 43,8 4                         | 42,5 47,2 45,8 45,9 45,4 45,9 47,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Metal a Piso<br>Manto        |                                                              | <u>↓</u> ↓↓↓↓↓↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Culata                       | <b>X</b>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| N' Ollas x hora              | 1 3 3 3 3 <b>4 2</b>                                         | 2 4 1 3 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Escoria                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| N' Ollas x hora              | 3 4 3 3 3 3 3                                                | 2 3 1 2 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| Escoria alta Ley             | IIIIII.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| N' Ollas x hora              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| PAC3                         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Flujo x1000                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| ×SO2                         | 9,7 9,6 9,4 9,9 9,8 9,9 9,8 9                                | 9,2 10,2 10,7 10,4 9,1 7,6 8,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| PAC1                         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Flujo x1000                  |                                                              | 1880 <mark>Filtracian vontana N13</mark> 6 186 167 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| %SO2                         | 7,6 5,9 8,2 5,6 Filtracian ventana4                          | 5,9 4 6,4 5,5 6,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| CPS 1                        |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Nm3/min                      | 737 720 668 779 6                                            | 655 644 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| CPS 2                        | T                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Nm3/min                      | 767 333 5                                                    | 596 674 636 662 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| CPS 3                        | ·····                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Nm3/min                      |                                                              | JJJJJJJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| CPS 4                        |                                                              | 1 <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                              | IIIIIII                                                      | JJJJJJJJJJJJJJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Nm3/min                      | 560 626 588                                                  | 518 523 553 562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| REFINO # 1                   |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Aire Nm3/Hr                  | 889999                                                       | 9 9 9 9 9 9 9 9 9 9 11 # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| Gas Nm3/Min                  |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| REFINO # 2                   |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Aire Nm3/Hr                  | 10 9 5 5 5 7 7 5 19 # 9 13 11                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Gas Nm3/Min                  |                                                              | 3 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| REFINO # 3                   |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Aire Nm3/Hr                  | 9 9 9 # # 11 18 18 18 13 12 14 13                            | 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Gas Nm3/Min                  | 16 16 16 16 16 16 16 16                                      | jefefun:<br>Cicle V-96 JL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| Moldeo Rueda 1               | jafafun:                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Piezas/Hra                   | 72 29 Problemar can Perdida de parician y gira de Roudazo 6  | 8 8 94 120 120 120 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | orte |
| ton acumuladas               | 76 78 realiza cambia de juega de cucharar y re retama maldea | 3 31 110 104 217 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JILE |
| Moldeo Rueda 2<br>Piezas/Hra |                                                              | 40 92 118 117 92 2 S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | allá |
| ton acumuladas               | 112 113 114 113 28<br>95 149 200 246                         | 7 85 119 170 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| (on acumuladas               | -T E00 E10                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |


- Integrated into combinatorial search
  - Find converter sequence that maximizes number of converted ladles in schedule

### Consider the following restrictions:

- A) Initial conditions
- **B)** Availability of converter
- **C)** Availability of reactor (consider production rate of reactor)
- **D) Offgas handling system**



ver más alla



- Given an ordering (*i-j-k*),
  - cursor advances from left to right
  - places the next cycle as <u>early as possible</u> (while respecting restrictions)

"Greedy"  $\rightarrow$  cursor only looks forward



- Mathematical formalism:
  - Consider ordering (*i-j-k*)
  - Consider the four restrictions A, B, C, D

$$t_1 = \text{starting time of first cycle of the new schedule} = \max\{ t_1^A, t_1^B, t_1^C, t_1^D \}$$

where  $t_1^{A}$  = earliest starting time for first cycle not to violate A  $t_1^{B}$  = earliest starting time for first cycle not to violate B  $t_1^{C}$  = earliest starting time for first cycle not to violate C  $t_1^{D}$  = earliest starting time for first cycle not to violate D

**Result:** *t*<sub>1</sub>**is the earliest time which satisfies all four conditions** 



- Mathematical formalism:
  - Similarly,

 $t_2 = \text{starting time of } \underline{\text{second cycle of the new schedule}} \\ = \max\{ t_2^A, t_2^B, t_2^C, t_2^D \}$ 

- Calculation of  $(t_2^{B}, t_2^{C}, t_2^{D})$  takes into account the first cycle (thus second cycle does not conflict with <u>first cycle</u>)
- More generally,

 $t_{l} = \text{starting time of } l^{\text{th}} \text{ cycle_of the new schedule}$  $= \max\{ t_{l}^{\text{A}}, t_{l}^{\text{B}}, t_{l}^{\text{C}}, t_{l}^{\text{D}} \}$ 

- Calculation of  $(t_l^{\rm B}, t_l^{\rm C}, t_l^{\rm D})$  takes into account the previous cycles, 1,2,3,... (*l*-1)

(thus *l<sup>th</sup>* cycle does not conflict with <u>previous cycles</u>)



## **Extensions/Future Work**

- Paper also describes the management of <u>Refining/Casting</u>
- More advanced algorithms
  - Alternate objectives (modes of operation)
    - Convert as much matte as possible
    - Reduce a certain class of WIP
    - Use as little energy as possible, etc.

### Operations Research of Cu Smelting

