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Integration of Different Data and Information to
characterize geological phenomena
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"A good model is the one that starts to be not
bad and , at the end, gives good results..."




Deterministic (dispersion) models mime the main dynamic
characteristics of the physical phenomena

Stochastic models (geostatistics) characterize the static
components of the process (polutant concentration, petrophysic
properties, etc..)

Motivation: integrate deterministic dispersion models in
stochastic charaterization of the resource by adding the
(predlctlve) temporal dimension, obtaining high resolution
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Motivation: integrate deterministic dispersion
models In stochastic charaterization of natural
resources by adding the (predictive) temporal
dimension, obtaining high resolution images of the
main characteristics and the uncertainty attached




Hydrogeology and Petroleum applications

In hydrogeology and petroleum applications deterministic
models, that mime the dynamic of physical phenomena,
are integrated a posteriori, through inverse models.

The idea Is to calibrate/update the aquifer or reservoir
parameters — internal properties, petrophysical properties,
.. — with the dynamic data.



Stochastic Simulation of
petrophysical parameters

. .
o

Obtain responses from dynamic
simulator

Perturbation/Optimization/..
of initial parameters until

the desired match is
obtained




Air Quality Modelling

The most of deterministic dispersion models applied for air quality
modelling faces, in general, two main limitations : the spatial
scale/resolution and the calibration with experimental data values
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Stochastic models (Geostatistics) produce high resolution models,
honour the experimental data but are unable to predict in time domain
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Stochastic Simulation of SO2 in space-time domain



Example #1 — Case study of a Costal lagoon with contaminated
sediments

Objective:

I- The use of hybrid models to integrate the main dynamic
characteristics of the phenomenon

lI- Integration of uncertainty of different conceptual models of
sediment depositional dynamics at the early stages of risk
analysis of a contaminated site



Case study: Barrinha de Esmoriz, coastal lagoon
with contaminated sediments
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Conceptual depositional model: contaminated
sediments are driven by the fluid flow

*Morphology of meanders structure are extracted by EO —Earth Oservation data.
*Main flow characteristics (direction, velocity) are taken by a dynamic simulator



Proposed Methodology: Stochastic simulation of a continuous
variable with local anisotropies

Continuous variable Z(x) with a distributions function Fz(z) = prob {Z(x) < z}

Dss with local anisotropies

i)  Define the random path over the entire grid of nodes x,, u=1,
Ns, to be simulated

i)  Estimate the local mean (simple kriging estimate z(x,)*) and
variance (estimation variance c?(x,)) conditioned to local
models of covariance anisotropy.

i)  Define the interval of F,(z) interval to be sampled (defined by
the local mean and variance of z(x))

iv) Draw the value z5(x,) from the cdf F,(z)

v)  Loop until all Ns nodes have been visited and simulated



Idea: to convert the output of dynamic simulator — directions
and velocities of flow — In local anisotropy ratios and main

directions
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The main directions and local anisotropy ratios, are accounted in the simple

kriging system to estimate local means and variances at a given location xO,

local models of C,4(h) Simple g”lg'”gf z’:\"”r‘] local
are defined in a regular models of Cy(h)

grid node Z(XO )* — Z ;I“a Cg (Xo y Xy )
a



Simple kriging system

At C{l,lj C{l,?j C{l n) i C{n rp)
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covariances



Data search assuming geometric anisotropy:
Pattern of spatial variability given by the

sample variogram
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DSS with local
anisotropy

eDSSXO7é eDsin

% Dss, = Yo pss,

4o Dss, 7£a<1>Dsin

!

Ratio DSSy, # Ratio DSS,,

—




Depositional models of Barrinha contaminated sediments
generated by a fluid flow simulator
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Results

Simulated image
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Example #2 - Downscaling of air quality dispersion
models: an hybrid multi-scale model

Objective:

. Hybrid multi-scale approach as a methodology for predicting air
quality

« Downscaling and calibration (with experimental point data) of
Images obtained by deterministic dispersion models



Air quality deterministic dispersion models

Advantages Disadvantages
 Incorporate meteorological « A large number of input
factors variables
 Incorporate atmospheric  Difficult to calibrate for fine
photochemical reactions grid scales

 |tis able to predict scenarios



Geostatistical stochastic simulation

 Prediction of pollutant dispersion in space and
time (past) at fine scales reproducing the mean
variability of data

 The ability of predicting pollutant dispersion In
time 1s limited: the models do not directly
Incorporate meteorological data



Uncertainty and Support

results from the air pollution dispersion models can
be assumed as real values of atmospheric pollutant
concentration in support v, but with associated
uncertainty



Rationale — Hybrid model (proposal)

15t Step — transformation of 1 input hard
data in a image of air quality

Input data: . :
*Meteorological A_|r qua_l ity :|'>
variables ::> dispersion
*Emissions model

Block data

Air Quality Dispersion Model transforms the real meteorological
data (wind directions, pressure,.., emissions) in a coarse image of

a pollutant concentration — the Block data
This transformation implies an error that must be accounted in

the simulation process




Rationale — Hybrid model (proposal)
2nd Step

Point data

* pollutant
atmospheric
concentration
measurements

Block data

Geostatistical
stochastic
simulation




Block Sequential Simulation (BSSIM)

Simulation of point values conditioned
to block and point data

Objective: to characterize high resolution images of
pollutant concentration based on block and point
data



Block Direct Simulation

i. In the node x, of a random path of a regular grid, the
following means and variel](n_ce_s are calculated by block co-
riging:

26) = 34, (el )+ 4, )2, )

° z,(x,) —
A7 Note that the kriging system
o> z2(x,) :;za(xo)-z(xa)+§ﬂﬁ(xo)-zv(xﬁ) requires the knowledge of spatial
A convariaces point-point, point-
T 2(x,) block and block-block : C(.,.) ,
° C(.,v) e C(v,v)

Simulation of a “point” value z5(x,) by re-sampling the global
cdf global of Z(x) (Direct Sequential Simulation Approach).



Block Kriging

Data taken at different scales, both on block-support and
on point-support are considered in the kriging system

block data is a linear
average of point values




Block Kriging

Z2,(0)-m =D = 3. (0Dl )
A =[2g] - Kriging weights
D'=[PB] - data value vector
Du,) - specific datum at location u,
nu) - number of data

Kriging system:

KA — k K — |:CPP CPB:| k _ |:CPP0:|
CIIB Ces CBF’o



Block-data error incorporation

Data Dy Is equal to the “true” value B plus an error R
DB (VOL) — B(Va) + R(Va)

Assuming that block errors are homoscedastic and not cross-
correlated, with zero mean and known variance, then:

2 - .
Error covariance  c_ =cov[R(v, R(v, )|= {GR (Vo) if v, =v,

Oif v, =V,



Block-data error incorporation

If errors are independent of the signal,
uncorrelated and with known variance

Ce(0)+02(v,)if v, =v,

CBaBB = 3

\CB(VOL,VB)if V, #Vg



Block-data error incorporation

The error variance can be obtained by a priori calibration

Error 1s the diference between the data D and
the “true” value B :

Re(v,)=D(V,)~B(V,)

Choosing the blocks with point data




Choosing the blocks with point data

The “true” value can be replaced by the conditional
simulated block data B!

R (v,) ~D(v,)~B'(v,)

—— B(v,)

Conditional simulated
block data

T Conditioning point data:

observation from a
monitoring station




Block-data error incorporation

The variance of block error is obtained with the N, realizations
of B! and the N, time periods.

The variance of block error can be
parametrized for different meteorological
conditions



Block sequential simulation (BSSIM)

1. Define a random path visiting each node u of the grid. For
each location u along the path:

2. Search conditioning data (point data, block data, previously
simulated values)

3. Compute the local block-to-block, block-to-point, point-to-
block and point-to-point covariances

4. Calculate local mean and variance by solving the mixed
scale kringing system

5. Draw a value from the global cdf and add the simulated
value to data set

6. Repeat (2-6) to generate another simulated realization



Air quality characterization at industrial area of Sines
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Sines Industrial Area
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Emissions and Meteorological Conditions
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Case study

« SO, daily average
atmospheric concentrations
measurements (3 stations)

« SO, daily average emissions
(5 stacks)

» Meteorological hourly data
« ICST3 (EPA)
« 24/07/2006 a 28/07/2006



Difusive Tubes Campaign
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Gaussian Plume model : Block data

24/07/2006 25/07/2006 26/07/2006

27/07/2006 28/07/2006

Number of blocks: 280
Block Size: 2500 m x 2500 m
Block Discretization: 3x3
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Results
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Block error effect

Block data Error variance= 0.05

48.1

23.28
40.08

19.4
32.07

15.52
24.05

11.64
16.03

7.761
8.017

z.882
o

0.0029%

Error variance= 0.5 Error variance= 0.9

z3.28 23.28
19.4 13.4
15.52 15.52
11.64 11.64
7.761 7.761
3.882 3.882
0.0029¢ 0.0025¢

¥



Block Error effect
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Final remarks

« This hybrid multi-scale approach is a valuable methodology
for predicting air quality

« Downscaling and calibration (with experimental point data) of
maps obtained by deterministic dispersion models is achieved
by the proposed method



Thank you



