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The use of hybrid models to integrate the main dynamic

characteristics of the physical phenomena
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Integration of Different Data and
Information



Integration of Different Data and Information to 
characterize geological phenomena

Geology Geophysics Well Data

Production 
Data



“A good model is the one that starts to be not 
bad and , at the end, gives good results...”



Deterministic (dispersion) models mime  the main dynamic 

characteristics of the physical phenomena

Motivation: integrate deterministic dispersion models in 

stochastic charaterization of the resource by adding the 

(predictive) temporal dimension, obtaining high resolution 

images of the main characteritics and the uncertainty attached 

Stochastic models (geostatistics) characterize the static 

components of the process (polutant concentration, petrophysic

properties, etc..)



Motivation: integrate deterministic dispersion 

models in stochastic charaterization of natural 

resources by adding the (predictive) temporal 

dimension, obtaining high resolution images of the 

main characteristics and the uncertainty attached 



In hydrogeology and petroleum applications deterministic 

models, that mime the dynamic of physical phenomena, 

are integrated a posteriori, through inverse models.  

The idea is to calibrate/update the aquifer or reservoir 

parameters – internal properties, petrophysical properties, 

.. – with the dynamic data.  

Hydrogeology and Petroleum applications



Stochastic Simulation of 

petrophysical parameters

Obtain responses from dynamic 

simulator 

Perturbation/Optimization/.. 

of initial parameters until 

the desired match is 

obtained



Air Quality Modelling

The most of deterministic dispersion models applied for air quality 

modelling faces, in general, two main limitations : the spatial 

scale/resolution and the calibration with experimental data values



Stochastic models (Geostatistics) produce high resolution models, 

honour the experimental data but are unable to predict in time domain 

Stochastic Simulation of SO2 in space-time domain



Example #1 – Case study of a Costal lagoon with contaminated

sediments

Objective:

i- The use of hybrid models to integrate the main dynamic

characteristics of the phenomenon

ii- Integration of uncertainty of different conceptual models of 

sediment depositional dynamics at the early stages of risk 

analysis of a contaminated site



Case study: Barrinha de Esmoriz, coastal lagoon

with contaminated sediments

1979

2006

1996



Available data: two sampling campaigns

2001– 30 samples 2008 – 69 samples



Conceptual depositional model: contaminated

sediments are driven by the fluid flow

•Morphology of meanders structure are extracted by EO –Earth Oservation data.

•Main flow characteristics (direction, velocity) are taken by a dynamic simulator



Dss with local anisotropies

i) Define the random path over the entire grid of nodes xu, u=1, 

Ns, to be simulated

ii) Estimate the local mean (simple kriging estimate z(xu)*) and 

variance (estimation variance 2
sk(xu)) conditioned to local 

models of covariance anisotropy.

iii) Define the interval of  Fz(z) interval to be sampled (defined by 

the local mean and variance of z(x))

iv) Draw the value zs(x0) from the cdf Fz(z)

v) Loop until all Ns nodes have been visited and simulated

Proposed Methodology: Stochastic simulation of a continuous

variable with local anisotropies (Horta et al, 2009)

Continuous variable Z(x) with a distributions function Fz(z) = prob {Z(x) ≤ z}



Idea: to convert the output of dynamic simulator – directions

and velocities of flow – in local anisotropy ratios and main

directions



z(x0)
*

local models of Cθ(h) 
are defined in a regular 

grid node

Simple kriging with local 

models of Cθ(h)

The main directions and local anisotropy ratios, are accounted in the simple

kriging system to estimate local means and variances at a given location x0,  
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Simple kriging system

Matrix of data covariances Vector of data-to-unknown 
covariances

sk(u) = Ksk
-1 . ksk

Vector of simple kriging weights



Data search assuming geometric anisotropy:

Pattern of spatial variability given by the

sample variogram

Elliptical diagram of ranges:

- Direction of maximum continuity (azimuth θ)

- Range of maximum continuity (major axis aθ)
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DSS
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DSS with local 
anisotropy
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Depositional models of Barrinha contaminated sediments

generated by a fluid flow simulator

Winter with tide Winter without  tide 



summer Winter (no tide)

Winter (with  tide)



Results

Input MOHID, Cu

Simulated image

Average

Spatial

uncertainty



Cu – Scenario A

Average images

a=350m

a=500m



Cu – Scenario B

a=350m

a=500m

Average images



Example #2 - Downscaling of air quality dispersion 

models: an hybrid multi-scale model

Objective:

. Hybrid multi-scale approach as a methodology for predicting air

quality

• Downscaling and calibration (with experimental point data) of

images obtained by deterministic dispersion models



Air quality deterministic dispersion models

Advantages Disadvantages

• Incorporate meteorological

factors

• Incorporate atmospheric

photochemical reactions

• It is able to predict scenarios

• A large number of input 

variables

• Difficult to calibrate for fine 

grid scales



Geostatistical stochastic simulation

• Prediction of pollutant dispersion in space and

time (past) at fine scales reproducing the mean

variability of data

• The ability of predicting pollutant dispersion in

time is limited: the models do not directly

incorporate meteorological data



Uncertainty and Support

results from the air pollution dispersion models can 

be assumed as  real values of atmospheric pollutant 

concentration in support v , but with associated 

uncertainty



Rationale – Hybrid model (proposal)

Input data:

•Meteorological

variables

•Emissions

Air quality

dispersion

model

Block data

1st Step – transformation of  i input hard 

data in a image of air quality 

Air Quality Dispersion Model transforms the real meteorological 

data (wind directions, pressure,.., emissions) in a coarse image of 

a pollutant concentration – the Block data 

This transformation implies an error that must be accounted in 

the simulation process



Rationale – Hybrid model (proposal)

Block data

Point data

• pollutant

atmospheric

concentration

measurements

Geostatistical

stochastic

simulation

2nd Step



Block Sequential Simulation (BSSIM)

Simulation of point values conditioned
to block and point data

Objective: to characterize high resolution images of
pollutant concentration based on block and point

data



Block Direct Simulation

i. In the node x0 of a random path of a regular grid, the
following means and variances are calculated by block co-

kriging:

ii. Simulation of a “point” value zs(x0) by re-sampling the global 
cdf global of  Z(x) (Direct Sequential Simulation Approach).
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Note that the kriging system

requires the knowledge of spatial

convariaces point-point , point-

block and block-block : C(.,.) , 

C(.,v) e C(v,v) 



Block Kriging

block data is a  linear 

average of point values

Data taken at different scales, both on block-support and

on point-support are considered in the kriging system
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Block Kriging
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Kriging system:
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Data DB is equal to the “true” value B plus an error R

Block-data error incorporation

Assuming that block errors are homoscedastic and not cross-

correlated, with zero mean and known variance, then:



If errors are independent of the signal, 

uncorrelated and with known variance

 

 

















vvvv

vvv

  ,

 )0( 2

ifC

ifC
C

B

RB

BB

Block-data error incorporation



Block-data error incorporation

)()()(   vvv BDRB

Error is the diference between the data D and

the “true” value B :

The error variance can be obtained by a priori calibration

Choosing the blocks with point data 
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The “true” value can be replaced by the conditional

simulated block data Bl

)( vlB

Conditioning point data: 

observation from a 

monitoring station

Conditional simulated

block data

Choosing the blocks with point data 



The variance of block error can be
parametrized for different meteorological

conditions
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The variance of block error is obtained with the Ns realizations

of Bl and the Nt time periods. 

Block-data error incorporation



Block sequential simulation (BSSIM)

1. Define a random path visiting each node u of the grid.  For 

each location u along the path:

2. Search conditioning data (point data, block data, previously

simulated values) 

3. Compute the local block-to-block, block-to-point, point-to-

block and point-to-point covariances

4.  Calculate local mean and variance by solving the mixed

scale kringing system

5. Draw a value from the global cdf and add the simulated

value to data set

6. Repeat (2-6) to generate another simulated realization



Air quality characterization at industrial area of Sines 





Sines Industrial Area

TROIA’92



Emissions and Meteorological Conditions



Sampling the Air Quality



Case study

49

• SO2 daily average

atmospheric concentrations

measurements (3 stations)

• SO2 daily average emissions

(5 stacks)

• Meteorological hourly data

• ICST3 (EPA)

• 24/07/2006 a 28/07/2006



Difusive Tubes Campaign

E.D. A nalysis ,Spatial variograms, calibration of  

Guassian Plume model 



Gaussian Plume model : Block data

51

Number of blocks: 280

Block Size: 2500 m x 2500 m

Block Discretization: 3x3  

24/07/2006 25/07/2006 26/07/2006

27/07/2006 28/07/2006



Results
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24/07/2006

25/07/2006

Sim#1 Sim#2 E-type

Sim#1 Sim#2 E-type



Results

26/07/2006

27/07/2006

Sim#1 Sim#2 E-type

Sim#1 Sim#2 E-type



Block error effect
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Error variance= 0.05

Error variance= 0.5 Error variance= 0.9

Block data



Block Error effect
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Error variance= 0.05

Error variance= 0.5 Error variance= 0.9

Block data



Final remarks

• This hybrid multi-scale approach is a valuable methodology

for predicting air quality

• Downscaling and calibration (with experimental point data) of

maps obtained by deterministic dispersion models is achieved

by the proposed method



Thank you


