

Artificial Intelligence for Mining Complexes:

Self-learning, deep neural networks and real-time adaptation of production scheduling

Roussos Dimitrakopoulos

COSMO Stochastic Mine Planning Laboratory - http://cosmo.mcgill.ca/

Content

- Mining complexes Mineral value chains
- New information and production planning
- Reinforcement learning
- Example from a copper mining complex
- Conclusions

Conventional / Deterministic Workflows

Stochastic Workflows

Simultaneous Optimization

Mining Complexes - Mineral Value Chains

A mining complex may be seen as an *integrated business* starting from the extraction of materials to a set of sellable products delivered to various customers and/or spot market

Simultaneous optimization of the mining complex/value chain

In Petroleum Reservoir Engineering:

Smart Oil Fields

Smart Fields Consortium

Dept of Energy Resources Engineering Stanford University

Source: https://smartfields.stanford.edu/

Mining Complexes - Mineral Value Chains

The Self-learning Mining Complex and

Updating Short-term Production Plans

New Information - Mining Complexes

- Sensor generated information
 - Equipment (Truck, Shovel)
 - Crushers
 - Conveyor belt
 - Processing plant
- Blasthole data
- New exploration data

Sensor Information

Trucks

Crusher

Shovels

Exploration

Blasthole

New Information: Workflow

The Self-Learning Mining Complex

Updating Uncertainty Models

Updating Short-term Production Plan

Supply Uncertainty

- Block properties
- Block tonnage
- Deleterious elements
- Material crushed
- Material leached

Equipment Uncertainty

- Shovel performance
- Truck performance
- Crusher performance
- Plant performance
- Leach performance

Decision Space Complexity

Solution: Reinforcement Learning using Monte Carlo Tree Search

Reinforcement Learning using MCTS

Results – A Copper Mining Complex

Parameters

- Weekly time scale 13 weeks of production plan updated
- Supply of materials and equipment uncertainty are considered
- Extraction and destination decisions for each block
- Elements considered: Cu, As, Au, other
- 25 stochastic simulations for each mine (15 for training and 10 for testing the performance)

Updated Production Plan

Weeks

13

18

Updated Production Plan

P90

P10

P50

Cumulative Cash Flows

Updated Production Plan

Updated Production Plan

Copper Production

Initial Production Plan

Updated Production Plan

Conclusions

- The Self-Learning Mining Complex
- A Reinforcement Learning Framework
- Adaptive Framework for Short-term Production Plan
- Example at a Copper Mining Complex
 - 13% increase in cash flow and 9% in coper from the updated production plan over 13 weeks
 - Very fast (<4 min for updating 13 weeks of production plan)
- A Continuous and Fast Updating Framework
- More to Expect and More Research Needed

Thanks are in order to our

COSMO Industry Members

And Funding Agencies

Canada Research Chairs Chaires de recherche du Canada

