Journey to the 40% Mine

Sector-wide reduction of energy consumption associated with mining to 40% of year 2000 levels, by 2040

McGill University, 30th October, 2015

Dean Millar MIRARCO Research Chair of Energy in Mining Professor, Bharti School of Engineering, Laurentian University

dmillar@mirarco.org

Acknowledgement

I sincerely thank the sponsors of the 2016 CIM Distinguished Lecturer Program:

CIM Foundation and Atlas Copco

MIRARCO's Energy, Renewables & Carbon Management Team

Tom Clifford Turbomachinery Efficiency (Riventa)

Harvard Farrant Wind Energy / Mine Energy Services Co

Alex Hutchison HAC Gas mixing /separation

Ariel Kadiayi Mine refrigeration

Saruna Kunwar Dr Michelle Cryogenic Mine Ventilation

Levesque

Audits

Mine Energy

(now CANMET)

Millar Director

Dr Caterina Noula Analytical Chemist for HAC project

Valeria Pavese HAC Efficiency

(UQAT)

Cooling

Jet Pump

Javier Rico-Paez Alberto Romero Sujit Sengupta

Optimal Mine Site Energy Supply

HAC Cryogenics / Electrical (Admira Distributed Hybrid Energy Systems)

Dr Kim Trapani Deep Mine Cooling/ Floating Photovoltaics / Carbon Business

HAC Demo

Project

(CEMI)

Manager

Steve Young Chen Zhuo Deep Mine HAC Hydrodynamics Cooling

What is a 40% Mine?

The 40% Mine:

Identification of a portfolio of energy conservation, energy efficiency, energy storage and renewable energy technologies to bring primary energy consumption associated with mineral production down to 40% of that today, by the year 2040.

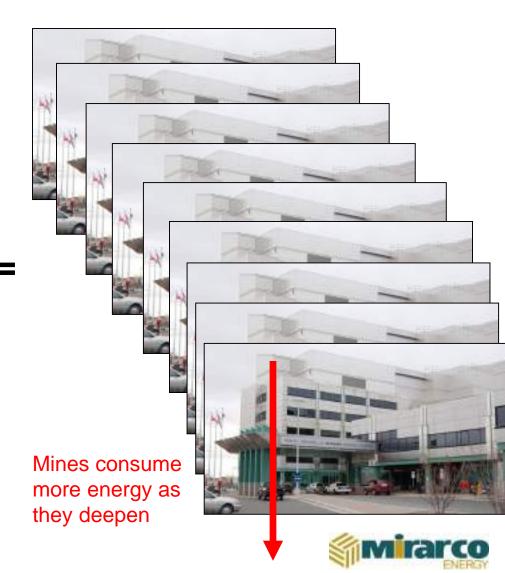
Motivation:

The research considers targeted energy solutions for mining operators that bring about the benefits of lower energy consumption, lower cost and lower environmental impact.

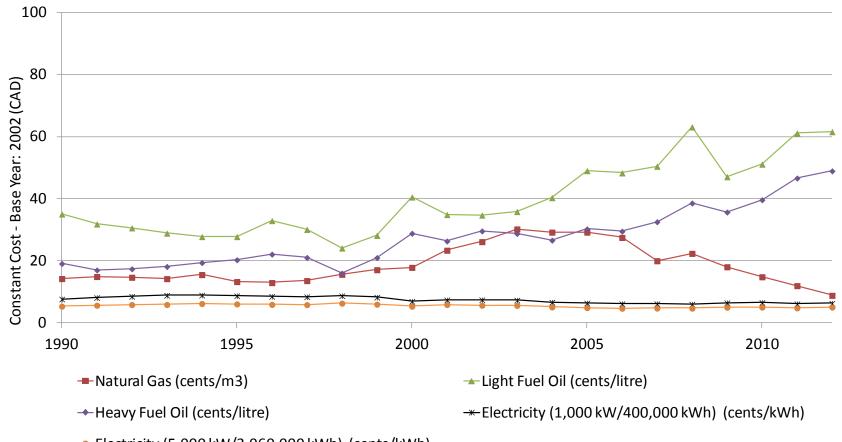
Why do we need a 40% Mine?

Wherever it goes on, mineral production is an energy intensive process; energy costs are dictating mine economics

1st equation:

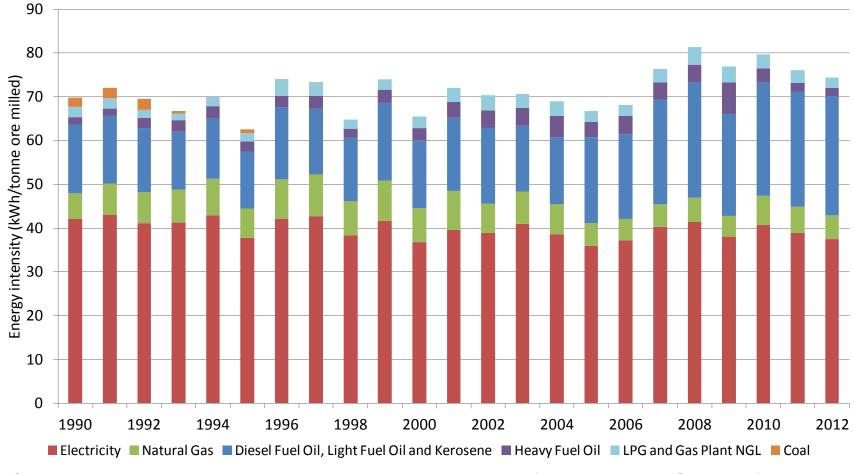

Nickel Rim South Discovered: 2001 Nameplate production achieved: 2011 Initial producing life: 15 years

Wherever it goes on, mineral production is an energy intensive process; energy costs are dictating mine economics


1st equation:

Nickel Rim South Discovered: 2001 Nameplate production achieved: 2011 Initial producing life: 15 years

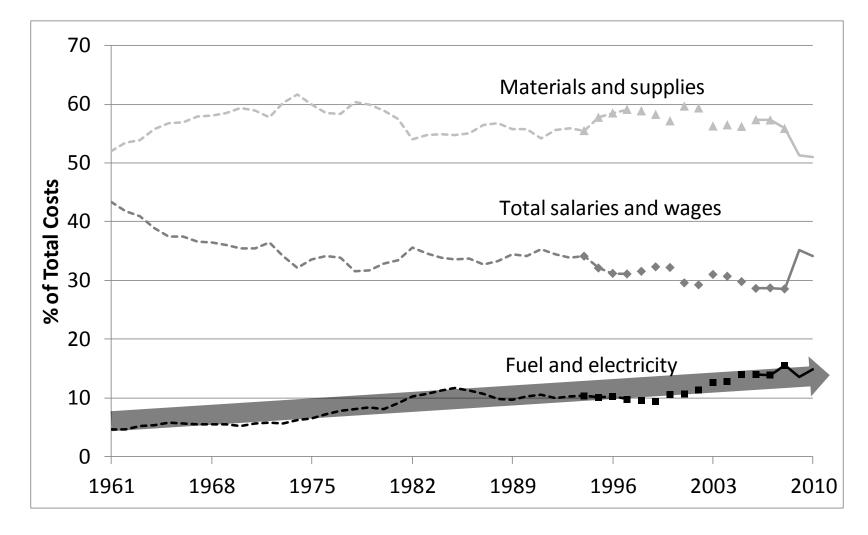
Diesel prices have risen since 1990



Electricity (5,000 kW/3,060,000 kWh) (cents/kWh)

(Natural Resources Canada ca. 2014, Statistics Canada 2015)

Levesque, M., Millar, D. and Paraszczak, J., 2014. Energy and mining – the home truths. Journal of Cleaner Production, 84(0), pp. 233-255


It appears that electricity savings have enabled increased diesel consumption

Canadian copper, nickel, lead and zinc mines energy intensity 1990-2012 (Natural Resources Canada, nd)

Levesque, M., Millar, D. and Paraszczak, J., 2014. Energy and mining – the home truths. Journal of Cleaner Production, 84(0), pp. 233-255

Proportion of total costs allocated to energy for metal mines in Canada has risen to 15%

Levesque, M., Millar, D. and Paraszczak, J., 2014. Energy and mining - the home truths. Journal of Cleaner Production, 84(0), pp. 233-255

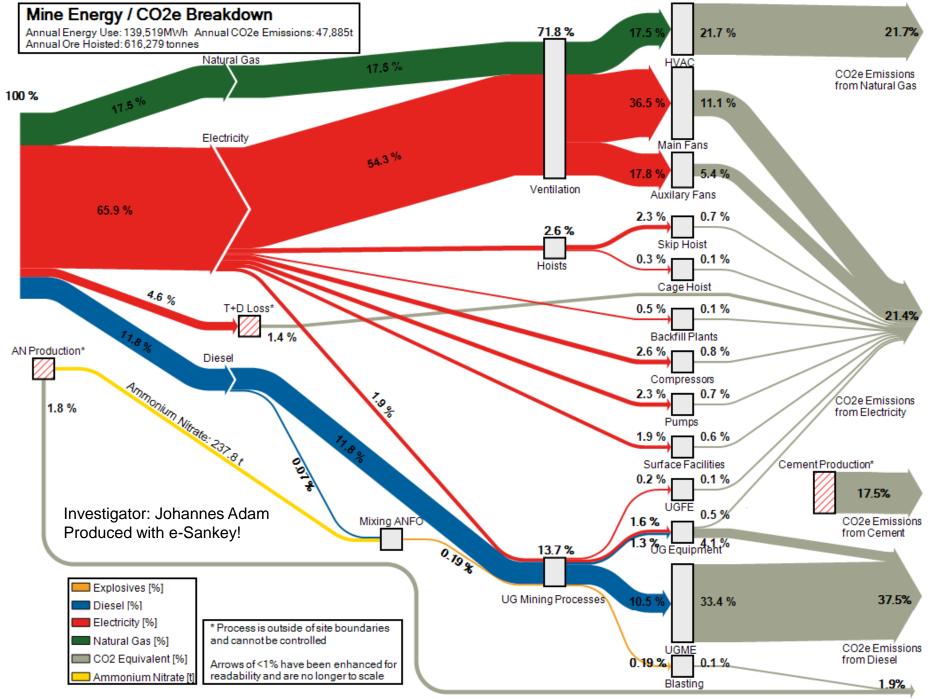
How could we do a 40% Mine 'for real'?

Practical options for a 40% Mine today must have Technology Readiness Level (TRL) >8

TRL	Description of Level
Level 9	Actual technology proven through successful deployment in an operational setting.
Level 8	Actual technology completed and qualified through tests and demonstrations.
Level 7	Prototype ready for demonstration in an appropriate operational environment.
Level 6	System/subsystem model or prototype demonstration in a simulated environment.
Level 5	Component and/or validation in a simulated environment.
Level 4	Component and/or validation in a laboratory environment.
Level 3	Analytical and experimental critical function and/or proof of concept.
Level 2	Technology concept and/or application formulated.
Level 1	Basic principles of concept are observed and reported.

Source: Canada Mining Innovation Council (CMIC): http://www.cmic-ccim.org/

CMIC has identified a range of technology options


- Waste heat recovery in mines (TRL 8 or 9)
 - Use warm exhaust air to heat up cold intake air
- VAM / methane drainage (TRL 7 to 9)
- Kalina cycle / Organic Rankine Cycle (TRL 8 or 9)
 - Low temperature thermal resources
- Hydropower generation (TRL 9)
 - Low flow/ high head applications: Minewater, hydraulic fill, paste fill
- Hydropowered mining equipment (TRL 9)
 - Northam Platinum Mine, Mponeng Mine,
- Regenerative breaking of downward mass flows (TRL 9)
 - Conveyors, Archimedian Screw Turbine, Electric vehicles, Trolley assist
- Seasonal Storage of thermal and mechanical power (TRL 9)
 - Stobie Ice Stope / Creighton Mine Natural Heat Exchange Area

40% Mine Strategy

- Reduce wasted energy
 - Eliminate obvious waste
 - Improved control systems
 - Storage of wasted energy for future use
- Use energy more efficiently
 - Improved control systems
 - Storage systems
 - Higher efficiency technology
- Technological solutions
 - Renewables
 - Re-newed technology

Example 1

CO2e Emissions from Explosives

Initial energy, cost and emissions statement

Drocoss	Proportions of Base Consumption						
Process	Туре	Energy %	Cost %	Emissions %			
HVAC	Natural Gas	17.5%	5.2%	21.7%	\		
Main Fans		36.5%	38.5%	11.1%			
Auxiliary Fans		17.8%	18.8%	5.4%			
Skip Hoist		2.3%	2.4%	0.7%			
Cage Hoist		0.29%	0.31%	0.09%			
Backfill Plants	Flootrigity	0.46%	0.49%	0.14%			
Compressors	Electricity	2.6%	2.7%	0.8%			
Pumps		2.3%	2.4%	0.7%			
Surface Facilities		1.9%	2.0%	0.58%			
UG FE (Crusher)		0.23%	0.24%	0.07%			
UC Equipment		1.6%	1.7%	0.48%			
UG Equipment		1.3%	2.4%	4.1%			
UG ME	Diesel	10.5%	19.4%	33.4%			
OG WE	Dieser						
ANEO Plasting		0.07%	0.14%	-			
ANFO Blasting	Explosives	0.19%	3.49%	1.9%			
Paste Plant	Cement			17.5%			
T + D Losses	Electricity	4.6%	4.83%	1.39%			
Totals:	Totals:	100.0%	100.0%	100.0%	•		

Ventilation: 54.3% Ventilation + Winter air heating: 71.8%

Investigator: Dr Michelle Levesque

Measure 1: Slippery, well installed, auxiliary ventilation ducting + Ventilation On Demand (TRL = 9)

Auxiliary ventilation duct strings can be designed and assessed with a useful, freely downloadable, tool:

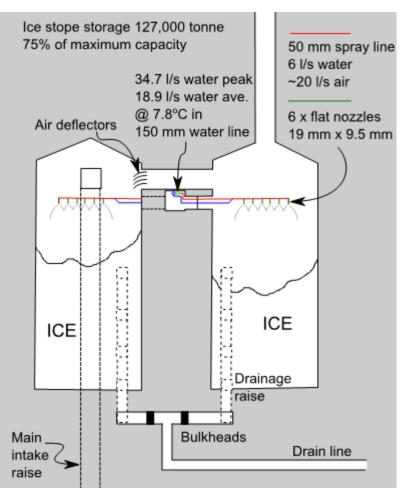
https://zone.biblio.laurentian.ca/dspace/han dle/10219/2301

70% savings against layflat and fixed speed fans, ~1 year payback

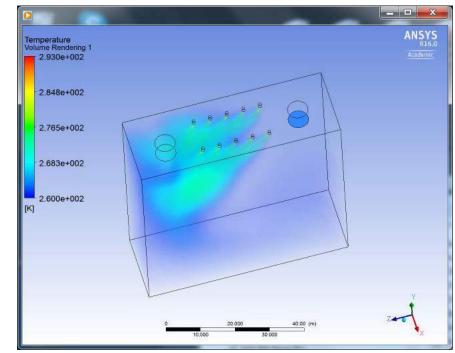
Source: Levesque, 2015. An improved energy management methodology for the mining sector. PhD Thesis, Laurentian University

Other initiatives:

Inflatable, velcro fixed exhaust cones Improved characterization of leakage


Measure 1: Slippery, well installed, auxiliary ventilation ducting + VOD

Process	Propo	ortions of Ba	se Consump	otion	Saving
Process	Туре	Energy %	Cost %	Emissions %	
HVAC	Natural Gas	17.5%	5.2%	21.7%	
Main Fans		36.5%	38.5%	11.1%	
Auxiliary Fans		17.8%	18.8%	5.4%	70%
Skip Hoist		2.3%	2.4%	0.7%	
Cage Hoist		0.29%	0.31%	0.09%	
Backfill Plants	Flootsisitu	0.46%	0.49%	0.14%	
Compressors	Electricity	2.6%	2.7%	0.8%	
Pumps		2.3%	2.4%	0.7%	
Surface Facilities		1.9%	2.0%	0.58%	
UG FE (Crusher)		0.23%	0.24%	0.07%	
		1.6%	1.7%	0.48%	
UG Equipment		1.3%	2.4%	4.1%	
LIC ME	Discul	10.5%	19.4%	33.4%	
UG ME	Diesel				
		0.07%	0.14%	-	
ANFO Blasting	Explosives	0.19%	3.49%	1.9%	
Paste Plant	Cement			17.5%	
T + D Losses	Electricity	4.6%	4.83%	1.39%	
Totals:	Totals:	100.0%	100.0%	100.0%	


Process	Proportions of Base Consumption					
Process	Туре	Energy %	Cost %	Emissions %		
HVAC	Natural Gas	17.5%	5.2%	21.7%		
Main Fans		36.5%	38.5%	11.1%		
Auxiliary Fans		5.3%	5.6%	1.6%		
Skip Hoist		2.3%	2.4%	0.7%		
Cage Hoist		0.3%	0.31%	0.09%		
Backfill Plants	Classicity.	0.5%	0.49%	0.14%		
Compressors	Electricity	2.6%	2.7%	0.8%		
Pumps		2.3%	2.4%	0.7%		
Surface Facilities		1.9%	2.0%	0.58%		
UG FE (Crusher)		0.2%	0.24%	0.07%		
UC Equipment		1.6%	1.7%	0.48%		
UG Equipment		1.3%	2.4%	4.1%		
UG ME	Diesel	10.5%	19.4%	33.4%		
UG ME	Diesei					
ANEO Blastin -		0.1%	0.14%	-		
ANFO Blasting	Explosives	0.2%	3.49%	1.9%		
Paste Plant	Cement			17.5%		
T + D Losses	Electricity	4.6%	4.83%	1.39%		
Totals:	Totals:	87.5%	86.9%	96.2%		

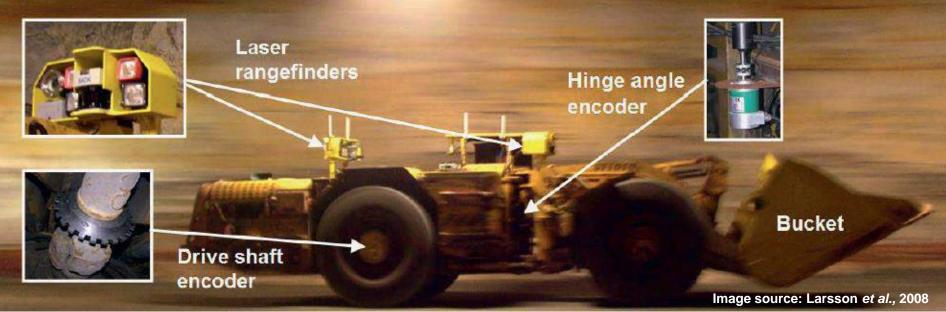
Measure 2: Eliminate natural gas usage completely through use of snow cannons and open stopes / voids (TRL = 9)

Air heating system at Stobie Mine, Sudbury

CAPEX (excavation) : CAD 10/m³ Mine pumps already lift warm water Main fans already provide air movement

Millar, D., Trapani, K., & Romero, A., 2015. Deep Mine Cooling, a Case for Northern Ontario: Part I Int. J. of Min. Sci. & Tech., In press.

Measure 2: Snow cannons and open stopes / voids


Dresses	Prop	ortions of Ba	Saving	Dresses		
Process	Туре	Energy %	Cost %	Emissions %		Process
HVAC	Natural Gas	17.5%	5.2%	21.7%	100%	HVAC
Main Fans		36.5%	38.5%	11.1%		Main Fans
Auxiliary Fans		17.8%	18.8%	5.4%	70%	Auxiliary Fans
Skip Hoist		2.3%	2.4%	0.7%		Skip Hoist
Cage Hoist		0.29%	0.31%	0.09%		Cage Hoist
Backfill Plants	Electricity	0.46%	0.49%	0.14%		Backfill Plants
Compressors	Electricity	2.6%	2.7%	0.8%		Compressors
Pumps		2.3%	2.4%	0.7%		Pumps
Surface Facilities		1.9%	2.0%	0.58%		Surface Facilities
UG FE (Crusher)		0.23%	0.24%	0.07%		UG FE (Crusher)
UG Equipment		1.6%	1.7%	0.48%		UG Equipment
og Equipment		1.3%	2.4%	4.1%		od Equipment
UG ME	Diesel	10.5%	19.4%	33.4%		UG ME
OG ME	Diesei					
ANFO Blasting		0.07%	0.14%	-		ANFO Blasting
ANIO blasting	Explosives	0.19%	3.49%	1.9%		ANIO Blasting
Paste Plant	Cement			17.5%		Paste Plant
T + D Losses	Electricity	4.6%	4.83%	1.39%		T + D Losses
Totals:	Totals:	100.0%	100.0%	100.0%		Totals:

Process	Propo	rtions of Ba	se Consum	ption
Process	Туре	Energy %	Cost %	Emissions %
HVAC	Natural Gas	0.0%	0.0%	0.0%
Main Fans		36.5%	38.5%	11.1%
Auxiliary Fans		5.3%	5.6%	1.6%
Skip Hoist		2.3%	2.4%	0.7%
Cage Hoist		0.3%	0.31%	0.09%
Backfill Plants	Electricity	0.5%	0.49%	0.14%
Compressors	Electricity	2.6%	2.7%	0.8%
Pumps		2.3%	2.4%	0.7%
Surface Facilities		1.9%	2.0%	0.58%
UG FE (Crusher)		0.2%	0.24%	0.07%
UG Equipment		1.6%	1.7%	0.48%
od Equipment		1.3%	2.4%	4.1%
UG ME	Diesel	10.5%	19.4%	33.4%
OG ME	Diesei			
ANFO Blasting		0.1%	0.14%	-
AINFO DIASUNg	Explosives	0.2%	3.49%	1.9%
Paste Plant	Cement			17.5%
T + D Losses	Electricity	4.6%	4.83%	1.39%
Totals:	Totals:	70.1%	81.7%	74.5%

Measure 3: Electrification of sub-surface mining equipment will improve worker health, with similar cost and save energy

- Substantially reduced ventilation requirements due to lower airborne contaminants and less heat (electric motors are efficient prime movers)
- For mobility/flexibility: run on conventional batteries, flow batteries or fuel cells
- Modern communications: remotely operated (to improve worker health & safety)
- Automate operation for enhanced productivity
- There is now appreciable effort deployed in R&D sector and by OEMs in development of battery-electric production equipment

Kirkland Lake Gold

- Battery electric scoops were 164% of diesel scoop costs (130 kW)
- Battery electric haul trucks are reported to have 65% of diesel cost per hour (170 kW)
- Trends positive: reliability improving, costs reducing

Source: Schuman, M. 2015. Case study: Battery powered underground mobile equipment. Presentation at Energy and Mines Summit, Toronto, 23rd October.

The ratings of battery electric production equipment are becoming greater

ScoopTram BEST7

- 7t bucket capacity
- Built on same chassis as diesel for commonality
- Lithium Ion battery packs
- Quick battery change out in 10 minutes
- Runtime on one battery is 3-4 hours depending on application

MineTruck BEMT2010

- 20t payload capacity
- Runtime on one battery is ~3 hours loaded up ramp.
- Consider your mine design to travel down ramp loaded, and up empty.
- Regenerative braking.

Source: Travis Battley. Atlas Copco, Pers. Comm.

Measure 3: Electrification (TRL = 8 now, but TRL = 9 by 2020)

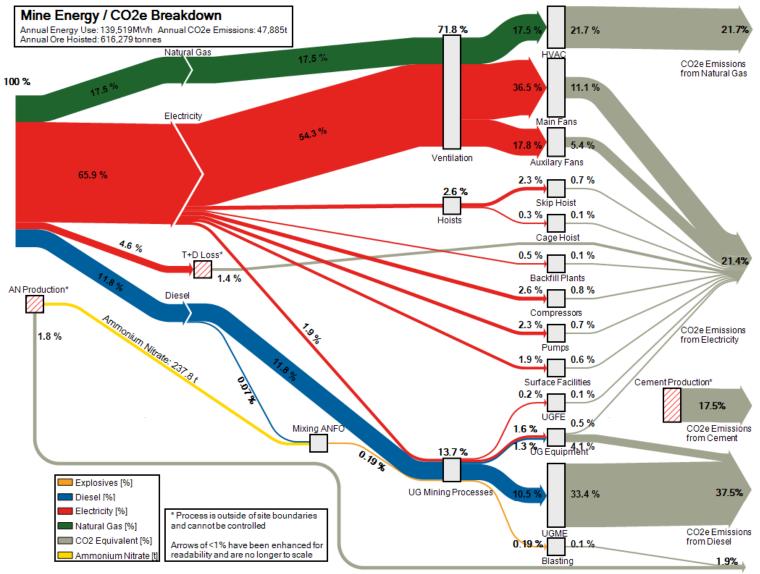
Process	Propo	ortions of Ba	se Consum	otion	Saving	Process	Propo	ortions of Bas	se Consum	ption
Process	Туре	Energy %	Cost %	Emissions %		Process	Туре	Energy %	Cost %	Emissions %
HVAC	Natural Gas	17.5%	5.2%	21.7%	100%	HVAC	Natural Gas	0.0%	0.0%	0.0%
Main Fans		36.5%	38.5%	11.1%		Main Fans		36.5%	38.5%	11.1%
Auxiliary Fans		17.8%	18.8%	5.4%	70%	Auxiliary Fans		5.3%	5.6%	1.6%
Skip Hoist		2.3%	2.4%	0.7%		Skip Hoist		2.3%	2.4%	0.7%
Cage Hoist		0.29%	0.31%	0.09%		Cage Hoist		0.3%	0.31%	0.09%
Backfill Plants	Electricity	0.46%	0.49%	0.14%		Backfill Plants	Electricity	0.5%	0.49%	0.14%
Compressors	Electricity	2.6%	2.7%	0.8%		Compressors	Electricity	2.6%	2.7%	0.8%
Pumps		2.3%	2.4%	0.7%		Pumps		2.3%	2.4%	0.7%
Surface Facilities		1.9%	2.0%	0.58%		Surface Facilities		1.9%	2.0%	0.58%
UG FE (Crusher)		0.23%	0.24%	0.07%		UG FE (Crusher)		0.2%	0.24%	0.07%
UC Equipment		1.6%	1.7%	0.48%	-3.9%	UC Equipment		5.4%	5.7%	1.65%
UG Equipment		1.3%	2.4%	4.1%	100%	UG Equipment		0.0%	0.0%	0.0%
UG ME	Diesel	10.5%	19.4%	33.4%	100%	UG ME	Diesel	0.0%	0.0%	0.0%
OGIVIE	Diesei					OG ME	Diesei			
ANEO Blasting		0.07%	0.14%	-		ANEO Blasting		0.1%	0.14%	-
ANFO Blasting	Explosives	0.19%	3.49%	1.9%		ANFO Blasting	Explosives	0.2%	3.49%	1.9%
Paste Plant	Cement			17.5%		Paste Plant	Cement			17.5%
T + D Losses	Electricity	4.6%	4.83%	1.39%		T + D Losses	Electricity	4.6%	4.83%	1.39%
Totals:	Totals:	100.0%	100.0%	100.0%		Totals:	Totals:	62.2%	64.0 %	38.2%

Measure 4: Revise ventilation system loading due to reduced DPM emissions (TRL = 9)

2nd Equation: (for the main mine fans):

MWh $\propto RQ^3$

so reducing air flow volume to 73% of its former value will reduce the electrical energy consumed by the fan to 39% of its former value



Measure 4: Modulate main fans for reduced airborne contaminant

Process	Propo	ortions of Ba	se Consum	ption	Saving	aving		ortions of Bas	se Consum	ption
Process	Туре	Energy %	Cost %	Emissions %		Process	Туре	Energy %	Cost %	Emissions %
HVAC	Natural Gas	17.5%	5.2%	21.7%	100%	HVAC	Natural Gas	0.0%	0.0%	0.0%
Main Fans		36.5%	38.5%	11.1%	61%	Main Fans		14.2%	15.0%	4.3%
Auxiliary Fans		17.8%	18.8%	5.4%	70%	Auxiliary Fans		5.3%	5.6%	1.6%
Skip Hoist		2.3%	2.4%	0.7%		Skip Hoist		2.3%	2.4%	0.7%
Cage Hoist		0.29%	0.31%	0.09%		Cage Hoist		0.3%	0.31%	0.09%
Backfill Plants	Flootsisitu	0.46%	0.49%	0.14%		Backfill Plants	Electricity.	0.5%	0.49%	0.14%
Compressors	Electricity	2.6%	2.7%	0.8%		Compressors	Electricity	2.6%	2.7%	0.8%
Pumps		2.3%	2.4%	0.7%		Pumps		2.3%	2.4%	0.7%
Surface Facilities		1.9%	2.0%	0.58%		Surface Facilities		1.9%	2.0%	0.58%
UG FE (Crusher)		0.23%	0.24%	0.07%		UG FE (Crusher)		0.2%	0.24%	0.07%
UC Equipment		1.6%	1.7%	0.48%	-3.9%	UC Equipment		5.4%	5.7%	1.65%
UG Equipment		1.3%	2.4%	4.1%	100%	UG Equipment		0.0%	0.0%	0.0%
UG ME	Diesel	10.5%	19.4%	33.4%	100%	UG ME	Diesel	0.0%	0.0%	0.0%
OGINE	Diesei					OG ME	Diesei			
ANEO Blasting		0.07%	0.14%	-		ANISO Blasting		0.1%	0.14%	-
ANFO Blasting	Explosives	0.19%	3.49%	1.9%		ANFO Blasting	Explosives	0.2%	3.49%	1.9%
Paste Plant	Cement			17.5%		Paste Plant	Cement			17.5%
T + D Losses	Electricity	4.6%	4.83%	1.39%		T + D Losses	Electricity	4.6%	4.83%	1.39%
Totals:	Totals:	100.0%	100.0%	100.0%		Totals:	Totals:	39.9%	40.6%	31.4%

The thin lines in the Sankey diagram need investigation too, for increased cost savings, via load levelling

CO2e Emissions from Explosives

The hoist consumed 4% of the total electricity at the mine

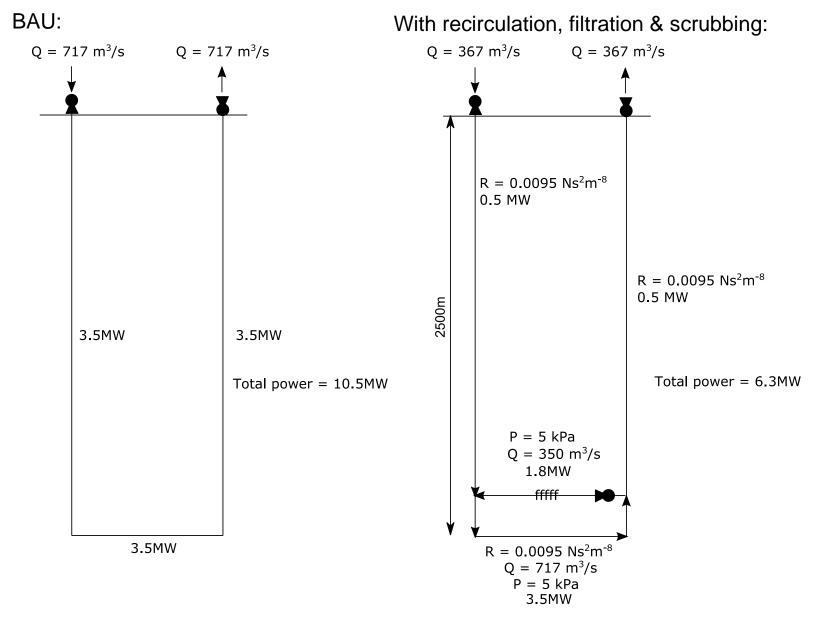
Are all 40% Mines the same?

No!

Example 2: A mine consuming 40% of the energy it does today, in 2040

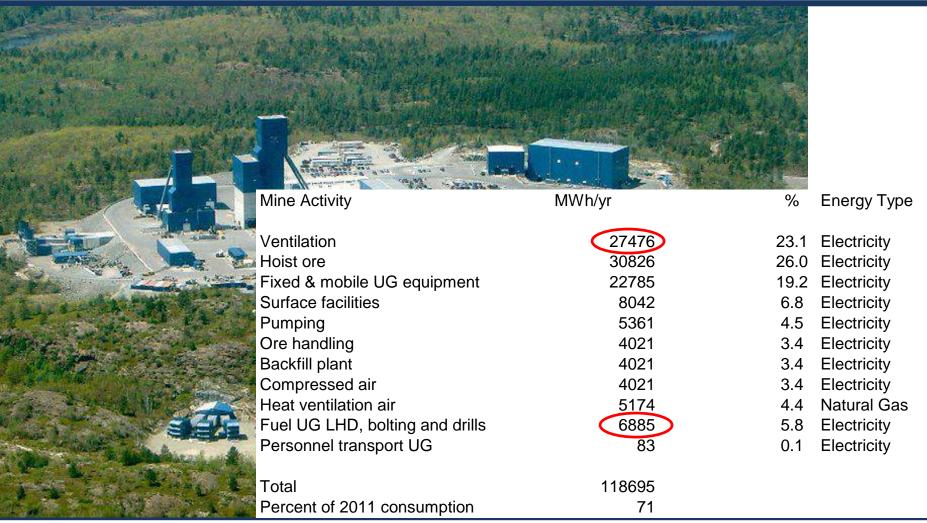
Picture credit: Xstrata Nickel

In a new mine, some of the 'easy wins', such as VOD, are already employed, with the result that ventilation energy is already lower

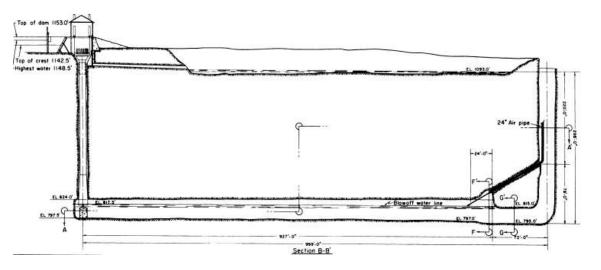

	Mine Activity	MWh/yr	%	Energy Type
	Ventilation	54951	32.9	Electricity
A A A A A A A A A A A A A A A A A A A	Hoist ore	30826	18.5	Electricity
A REAL PROPERTY AND A REAL	Fixed & mobile UG equipment	22785	13.6	Electricity
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Surface facilities	8042	4.8	Electricity
	Pumping	5361	3.2	Electricity
	Ore handling	4021	2.4	Electricity
	Backfill plant	4021	2.4	Electricity
	Compressed air	4021	2.4	Electricity
The Arrest We and	Heat ventilation air	5174	3.1	Natural Gas
	Fuel UG LHD, bolting and drills	27540	16.5	Diesel
The state of the s	Personnel transport UG	334	0.2	Gasoline
The Constant of C	Total	167076		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Percent of 2011 consumption	100		

Picture credit: Xstrata Nickel

Source: Bartsch, 2011. Nickel Rim South Mine: Leveraging Infrastructure for Energy Management and Optimization. ARC Orlando Forum, 2011


Substantial savings could be obtained by recycling mine air (TRL = 5)

Data source: O'Connor, Gibson, MacKay, & Grupp (2002) Creighton Mine, #11 shaft exhaust fan upgrade, 9th US Mine Ventilation Symposium


The most significant impact of use of electric vehicles on the energy budget is reduced consumption for ventilation

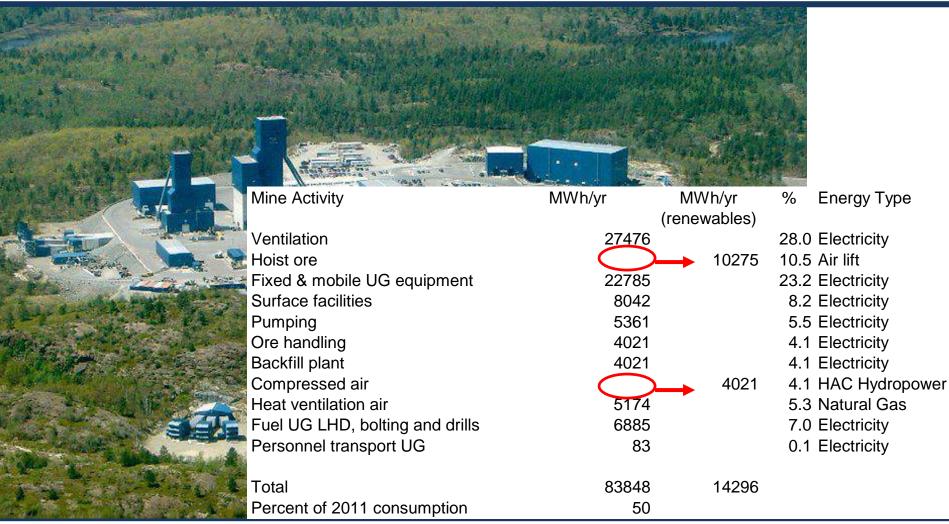
Picture credit: Xstrata Nickel

Clean, green, cheap compressed air can be produced efficiently and re-newably by modernization of a 19th century technology (TRL = 9 / 7) Charles Havelock Taylor & Family

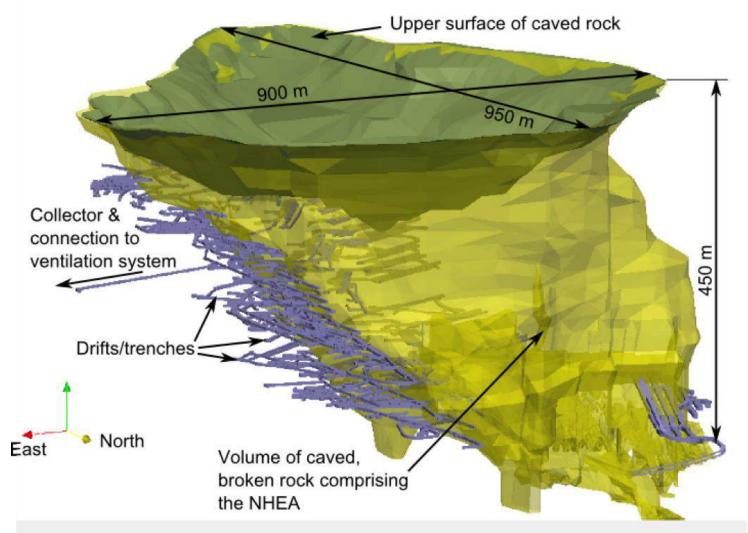
- The hydraulic air compressor has no moving parts
- After commissioning, the Ragged Chutes HAC operated for 70 years, only being stopped twice for repairs to the intake heads
- Operated using falling water from Montreal river
- Produced air for ~29 silver mines in Cobalt, 20 km distant

Bringing comminution plant into the sub-surface will present new opportunities for transporting ore material to surface

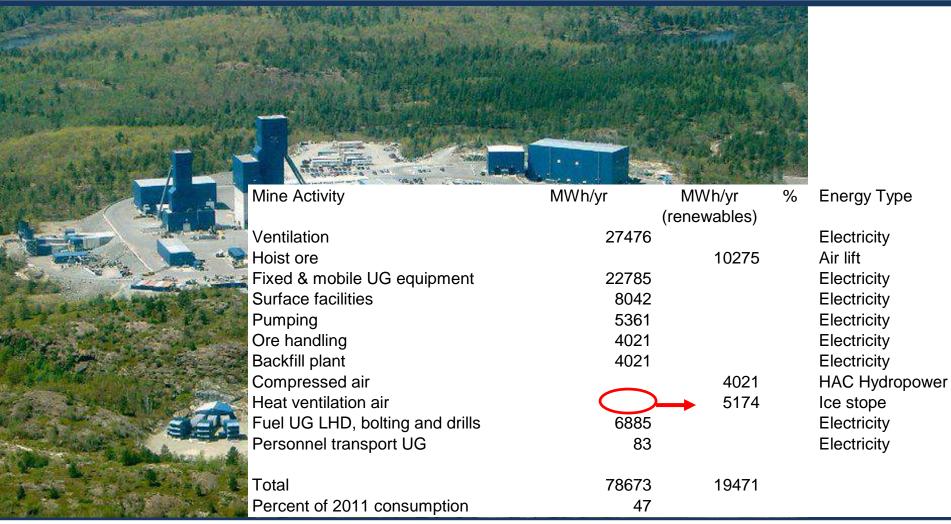
A semi-autogeneous grinding mill underground (TRL = 9)



A new generation of rock crusher uses 30% less energy to reduce size to ~3mm (Sandvik, 2012) TRL = 9



Substantially more energy than the fundamental potential energy is used to lift 1.25 million tonnes of ore to surface

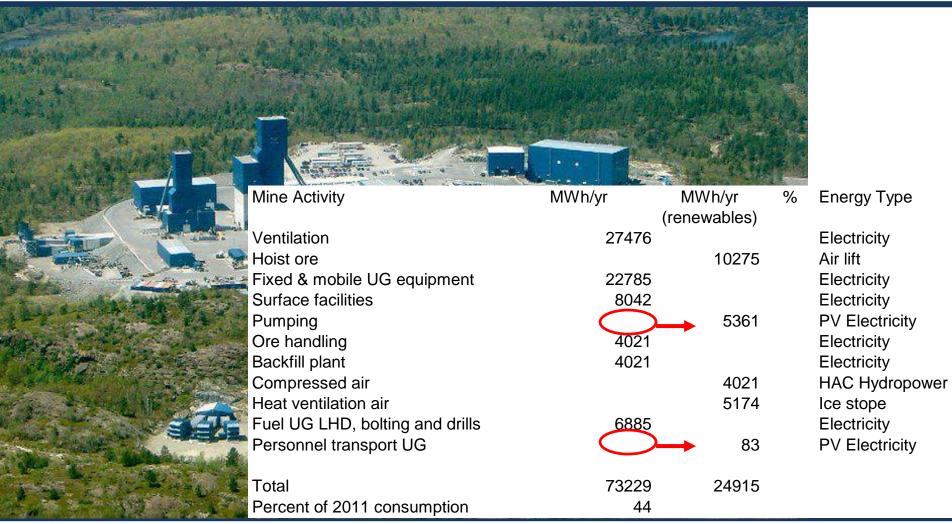

Cold winter mine air is warmed by heat captured from the warm summer air, and stored in a massive body of broken rock (TRL = 9)

Investigators: Dr Lorrie Fava, Alberto Romero, Negar Saeidi

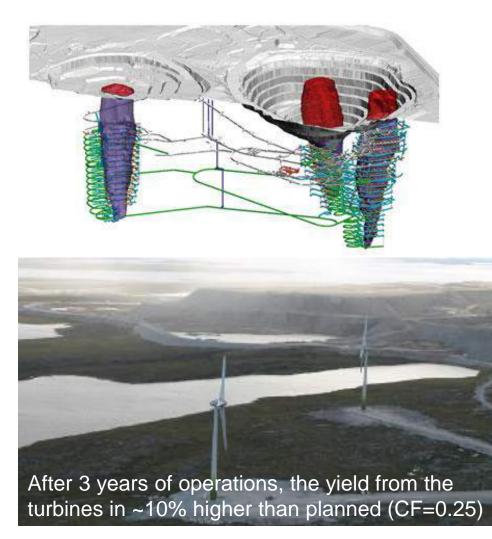
Upcast air heat recovery systems, ice stopes, heat exchange areas, or combinations could eliminate natural gas consumption

mal

Having learnt a great deal ourselves through testing a small scale flexible, direct contact prototype in a calm pond in Sudbury, we are deploying a $20kW_p$ demonstrator in the Mediterranean Sea, off the coast of Malta



Victor Mine Courtesy De Beers Canada


3 MW_p

A 3MW_p flexible, floating, photovoltaic array could offset dispatchable electrical loads, such as dewatering pumps

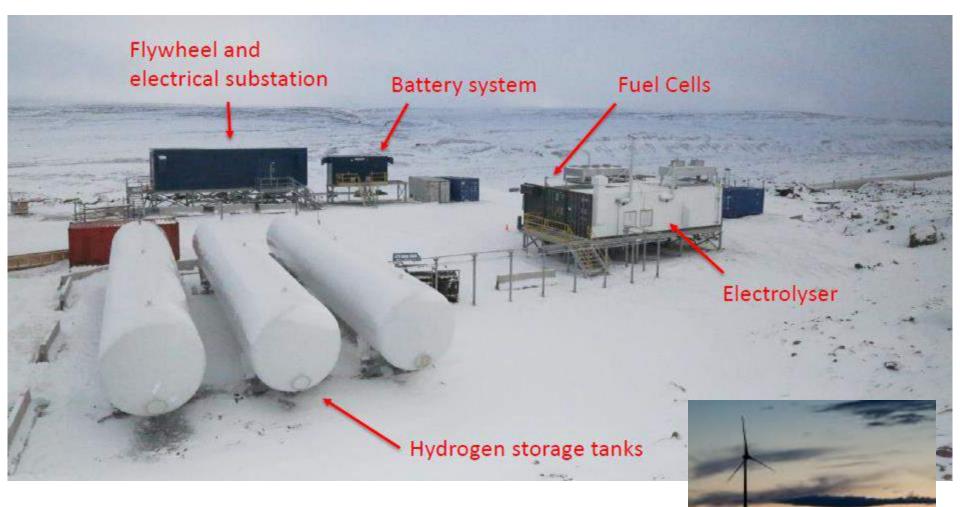
As mines are worked deeper, specific energy consumption (kWh/tonne) rises, and reliance on electricity increases

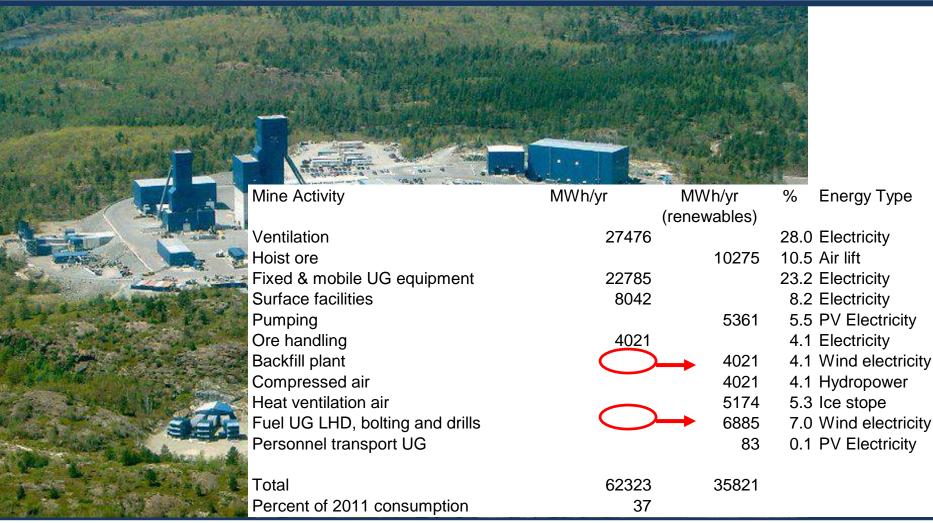
Diavik Diamond Mine:

- 50 million litres of diesel / year
- Annual fuel cost of \$70 million
- 2012: Transition to underground mining

Solution: Diavik wind farm

- 4 x Enercon (Germany) E70 turbines
- \$33 million investment
- 9.2 MW installed capacity
- 10% reduction in diesel consumption
- 6% reduction in CO_2 footprint
- Fitted with innovative blade deicing technology, operation to temperatures of -40°C
- 28th Sept 2012 Wind farm operational


Graphic / photograph courtesy of the Diavik Diamond Mine


Liezl van Wyk Rio Tinto Wind energy pioneer

A key priority of renewable energy in mines is firmness of supply. Power quality is important too.

Wind energy storage system, Raglan Mine, Northern Quebec Source: Tuglig Energy Co. & HATCH, Energy & Mines, Toronto, Oct 2015 Electricity from wind turbines could displace electricity supplied for batch processes and charge battery powered equipment

A 40% Mine vision is not unrealistic at all

- TRL 8/9 technologies are 'out there' at reasonable cost
- Different mines have different, and dynamic, energy flow maps, and so what works in one mine may not work in another...
- ...but a portfolio of technology options exists so that 40%
 Mine solutions can be formulated for most mines
- 60% reduction in energy:
 - <60% reduction in energy cost</p>
 - >60% reduction in emissions
- Not necessarily a 'green' solution, but definitely an integrated solution
- The mining industry is already on the journey

3rd equation:

Energy + Mining =

Thank you again to the sponsors of the CIM 2016 Distinguished Lecturer Program:

