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Strategic Open Pit Mine Planning

Which blocks should be extracted?

When should they be extracted?

What should their destination be?
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Step 1. Phase Definition.

Step 2. Production Scheduling.

Lerchs and Grossman 1965

Define phases using a 
sequence of nested pits 
(Compute arcs and use 
parametric version of LG 
algorithm, increasing prices)
[use fixed cut-off grade to 
distinguish ore from waste]

Schedule extraction over time 
at an increment (bench-phase) 
level using a dynamic 
programming approach that 
maximizes net-present value 
while satisfying constraints.

Kenneth Lane 1964

Traditional Approach



Phase Design and Production Scheduling



Can this be done with integer programming?



Where is the uncertainty!?



Why we are not considering uncertainty (for now)

• Size of mines → exact optimization is intractable

• Ultimate goal = stochastic version, but even the deterministic 

version is approximated for solving

• Many approaches use elaborate heuristics for obtaining good 

solutions, but unfortunately obtaining optimality guarantees 

seems impractical

• Solving deterministic instances to provable optimality, can be 

used to evaluate scenarios, or as an oracle to other optimization 

routines



Phase Design Formulation



Extract block “b” in time “t”

Proportion of “b” sent to “d” in “t”

+ Resource consumption constraints that limit extraction per period and 

tons of material sent to each destination (mill, waste-pile, etc.).

Phase Design Formulation



Production Scheduling Formulation



Percentage of cluster ‘c’ extracted in time ’t'

Entirety of a cluster constraint:

If cluster ‘c’ is a predecessor of cluster ‘d’ then:

Each cluster is a bench-phase comprised of multiple blocks

Production Scheduling Formulation



Tricky integrality condition



Percentage of block ‘b’ sent to destination ‘d’ in time ’t'

Blocks in the same cluster must be 

extracted simultaneously:

Each cluster is made up of several individual blocks

Production Scheduling Formulation

But destination decisions are made 

for each block individually!



Very large multi-modal, batch RCPSP problem with funny integrality constraints, and 

possibly mean side-constraints (G).



2-10 million blocks

1-5 elements of interest

2-5 destinations

20-100 time periods



Size of Full Formulations

Phase Design Production Scheduling

Periods Blocks Variables Clusters Blocks Variables

calbuco 21 5,016,971 316,069,173 324 200,241 12,615,183

chaiten 25 339,199 16,959,950 273 288,073 14,403,650

guallatari 21 1,672,198 105,348,474 272 57,527 3,624,201

kd 12 14,153 339,672 53 10,128 243,072

marvinml 20 53,271 2,130,840 56 8,515 340,600

mclaughlin 20 2,140,342 85,613,680 173 180,749 7,229,960

mclaughlinlimit 15 112,687 3,380,610 166 110,768 3,323,040

palomo 40 772,800 61,824,000 74 190,319 15,225,520

ranokau 81 1,873,035 303,431,670 186 317,907 51,500,934

tronador 20 329,859 18,801,963 220 30,099 1,805,940

Espinoza, Goycoolea, Moreno, Newman. MineLib: A library of Open Pit Mining Problems. Annals of OR (2012). 
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*** CPLEX ERROR 1001:  Out of memory.



Solving large problems: A MIP approach.

Pre-Processing

Specialized Linear Programming Solvers

Heuristics

Cutting-Planes

Branching

O

M

P

- Open

- Mine

- Planner

A specialized solver designed to solve a broad

class of scheduling problems using open MIP 

techniques.



(must be able to solve very large problems quickly)

First ingredient: a powerful LP-Solver



Very large multi-modal, batch RCPSP problem with funny integrality constraints, and 

possibly mean side-constraints (G).



A useful change of variables

0 0 0 1 0 0

0 0 0 1 1 1

Period 1 Period 3



A useful change of variables



An equivalent formulation



An equivalent formulation

Max closure problem

Millions

Hundreds



An equivalent formulation

Max closure problem

Millions

Hundreds

Suitable for a decomposition method

We name the “easy” constraints



Master Problem Pricing Problem(lower bound) (upper bound)

In the mining problem:

Pricing is max-closure problem

"Easy" to solve, using Hochbaum’s

Pseudoflow algorithm.

Dantzig-Wolfe Decomposition



Phase Design Production Scheduling

DW DW

calbuco 2h 28m 8s

chaiten 9h 34m 15s

guallatari 733.94 5s

kd 11s 250ms

marvinml 14s 380ms

mclaughlin 48m 2s

mclaughlinlimit 9m 1s

palomo 1h 30m 3s

ranokau 3d 0h 42m 20m 30s

tampakan 1788.18 5s

Effectiveness of Dantzig-Wolf Decomposition



Phase Design Production Scheduling

DW DW+S DW DW+S

calbuco 2h 28m 40m 8s 13s

chaiten 9h 34m 2h 27m 15s 17s

guallatari 733.94 315.06 5s 8s

kd 11s 8s 250ms 320ms

marvinml 14s 10s 380ms 700ms

mclaughlin 48m 15m 2s 2s

mclaughlinlimit 9m 4m 35s 1s 1s

palomo 1h 30m 36m 42s 3s 3s

ranokau 3d 0h 42m 10h 52m 20m 30s 14m

tampakan 1788.18 534.09 5s 5s

Effectiveness of Dantzig-Wolf Stabilization

In-Out Separation and Column Generation Stabilization by Dual Price Smoothing. Pessoa et al. 2013



Solving the Linear Programming relaxation

Specialized Lagrangian-Based algorithm for solving precedence-constrained problems.



Master Problem Pricing Problem(lower bound) (upper bound)

Can be almost anything

Ideally, spanned linear space 

should contain all past 

generated columns 

The BZ algorithm: idea

In the mining problem:

Pricing is max-closure problem

"Easy" to solve, using Hochbaum’s

Pseudoflow algorithm.



The BZ algorithm



Pricing

The BZ algorithm



The BZ algorithm



Pricing

The BZ algorithm



The BZ algorithm



Pricing

The BZ algorithm



The BZ algorithm



Pricing

The BZ algorithm



The BZ algorithm



Phase Design Production Scheduling

DW DW+S BZ DW DW+S BZ

calbuco 2h 28m 40m 11m 40s 8s 13s 10s

chaiten 9h 34m 2h 27m 26m 55s 15s 17s 10s

guallatari 733.94 315.06 1m 50s 5s 8s 4s

kd 11s 8s 2s 250ms 320ms 200ms

marvinml 14s 10s 3s 380ms 700ms 500ms

mclaughlin 48m 15m 4m 40s 2s 2s 2s

mclaughlinlimit 9m 4m 35s 1m 30s 1s 1s 1s

palomo 1h 30m 36m 42s 11m 3s 3s 3s

ranokau 3d 0h 42m 10h 52m 9h 39m 20m 30s 14m 8m 40s

tampakan 30m 8m 50s 2m 7s 5s 5s 3s

Effectiveness of BZ algorithm



Speeding up the BZ algorithm:

0 0 0 1 1 1



Sub-structure of precedence graph

Common Structure in Production Scheduling



Each path either does not touch the closure, or, is cut into two pieces

A closure in the precedence graph



Sub-structure of precedence graph

A significantly smaller graph



Number of Nodes

Before After

calbuco 12,615,183 6,804

chaiten 14,403,650 6,825

guallatari 3,624,201 5,712

kd 243,072 636

marvinml 340,600 1,120

mclaughlin 7,229,960 3,460

mclaughlinlimit 3,323,040 2,490

palomo 15,225,520 2,960

ranokau 51,500,934 15,066

tronador 1,805,940 4,400

Effect of path compression 

M., Espinoza, Goycoolea, Moreno, Queyranne, Rivera. COAP (2017).

A study of the Bienstock-Zuckerberg algorithm, Applications in Mining and Resource Constrained Project Scheduling.



Second ingredient: Cutting-Planes

(designed to exploit problem-specific structures)



Phase Design Production Scheduling

LP / Best LP / Best

calbuco 102.06% 108.28%

chaiten 100.33% 117.26%

guallatari 101.22% 102.02%

kd 100.87% 101.75%

marvinml 102.49% 105.75%

mclaughlin 100.21% 102.52%

mclaughlinlimit 100.16% 102.39%

palomo 101.10% 114.87%

ranokau 102.22% 131.48%

tronador 102.47% 108.84%

Geo Mean 101.31% 109.17%

Gap without adding any cuts

Gap relative to the best known lower bound (feasible solution)



To extract this block, we need to extract 

everything above it. This results in an earliest 

possible extraction time for the block.

Early-Start Cuts

Classical variable elimination method

(Gaupp (2008), Lambert et al. (2014) and many others)



This is more than can be extracted in

time “t” or before [brown region].

If the sum is greater than one it is because 

all of the brown region was extracted 

in “t” or before.

Clique Cuts
(proposed originally for the single knapsack case Boyd (1993))



Clique Cuts

If c1 and c2 are such that:

is valid

(proposed originally for the single knapsack case Boyd (1993))



Clique Cuts

The inequalities can be easily generalized to 

any group of clusters c1, c2,…, ck

(proposed originally for the single knapsack case Boyd (1993))



Diamond Cuts

The intersection of closure and reverse closure of 

two clusters induce a “lag” between their extraction

(similar to Zhu et al. (2006) for resource constrained scheduling)



No Cuts E. Cuts

calbuco 108.28% 108.28%

chaiten 117.26% 100.88%

guallatari 102.02% 100.87%

kd 101.75% 101.75%

marvinml 105.75% 103.06%

mclaughlin 102.52% 102.52%

mclaughlinlimit 102.39% 102.39%

palomo 114.87% 111.37%

ranokau 131.48% 104.96%

tronador 108.84% 100.90%

Geo. Mean 109.17% 103.65%

Gap after adding Extraction cuts

Gap relative to the best known lower bound (feasible solution)



VRHS Cuts
(combines precedences and production capacities)

The following inequality is always valid:



VRHS Cuts
(combines precedences and production capacities)

Its most general version:



Hour-Glass Cuts

assume

then



Hour-Glass Cuts

assume

then



No Cuts E. Cuts P. Cuts All Cuts

calbuco 108.28% 108.28% 102.42% 102.42%

chaiten 117.26% 100.88% 109.23% 100.00%

guallatari 102.02% 100.87% 101.09% 100.54%

kd 101.75% 101.75% 100.21% 100.21%

marvinml 105.75% 103.06% 101.10% 100.61%

mclaughlin 102.52% 102.52% 100.34% 100.34%

mclaughlinlimit 102.39% 102.39% 100.25% 100.25%

palomo 114.87% 111.37% 103.62% 101.26%

ranokau 131.48% 104.96% 105.20% 101.82%

tronador 108.84% 100.90% 104.00% 100.80%

Geo. Mean 109.17% 103.65% 102.71% 100.82%

Gap after adding different classes of cuts

Gap relative to the best known lower bound (feasible solution)

Rivera, Espinoza, Goycoolea, Moreno, M., Submitted (2018). Available upon request. 



Third ingredient: Heuristics



TopoSort Heuristic

Interpret x as “probability”

Expected extraction time

Topologically sort the clusters, and break-ties using this weight.

(uses LP solution to guide a greedy algorithm)



1-Dest Heuristic

• If blending is present, TopoSort might output an 

infeasible schedule.

• As an alternative, for Production Scheduling, we use the 

LP solution to fix destinations and then use a MIP solver 

on the reduced instance



Computational Results



Gap Time

calbuco 2.06% 13m 5s

chaiten 0.33% 26m 55s

guallatari 1.22% 2m 16s

kd 0.87% 2.8s

marvinml 2.49% 4.5s

mclaughlin 0.21% 4m 55s

mclaughlinlimit 0.16% 1m 36s

palomo 1.10% 12m 12s

ranokau 2.22% 9h 39m 13 s

tronador 2.47% 3m 13s

Geo Mean 1.31%

Effectiveness of the Overall Approach
(Phase Design)



Root BB4

calbuco 2.70% 2.37%

chaiten 0.00% 0.00%

guallatari 0.63% 0.36%

kd 0.26% 0.00%

marvinml 0.71% 0.00%

mclaughlin 0.66% 0.41%

mclaughlinlimit 0.37% 0.01%

palomo 2.43% 1.33%

ranokau 2.06% 2.06%

tronador 0.80% 0.32%

Geo. Mean 1.06% 0.68%

Final GAP for Production Scheduling Problem,

obtained combining heuristics, cuts, and branching.

Effectiveness of the Overall Approach
(Production Scheduling)



LP (BZ) LP + Cuts 1-Dest BB4

calbuco 10s 4m 42.9s 1m 3.9s > 4h  

chaiten 9.9s 1m 26.4s 5m 41.4s 8.1s 

guallatari 3.5s 23.4s 5m 26.7s > 4h  

kd 0.2s 0.9s 0.7s 38.5s 

marvinml 0.4s 2s 2.4s 15m

mclaughlin 2.1s 12.4s 6.3s > 4h  

mclaughlinlimit 1.1s 5.2s 5.9s 2h 19m

palomo 3.4s 29.6s 21.7s > 4h  

ranokau 9m 19.8s 6m 12.6s 13m 9.3s > 4h  

tronador 2.9s 9.8s 17.5s > 4h  

Effectiveness of the Overall Approach

C implementation, CPLEX 12.6, Linux 2.6.32 x86 64, four 8-core 

Intel R Xeon R E5-2670 processors and 128 Gb of RAM

(Production Scheduling)



Effectiveness of the Overall Approach

Our instances also include versions with:

• Minimum processing constraints

• Flow balance constraints 

(production cannot change drastically)

• Blending

The methodology shows the same behaviour



Final thoughts

- Mine Planning is a challenging problem that is becoming

tractable thanks to the community of researchers

- Combining new and old techniques we can obtain optimality 

guarantees in moderate times in the deterministic setting

- Current efforts are being made to successfully include 

stockpiling and better connectivity constraints

- We hope this can be used as a building block in more ambitious 

problems such as Stochastic Integer Programming models



Thank you!


