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Strategic Open Pit Mine Planning

Which blocks should be extracted?
When should they be extracted?
What should their destination be?

WikiMedia Commons (File:RC drill rig.jpg)
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Traditional Approach

Lerchs and Grossman 1965

v \_/ Define phases using a
sequence of nested pits
(Compute arcs and use
parametric version of LG
algorithm, increasing prices)

Step 1. Phase Definition [use fixed cut-off grade to
| ' distinguish ore from waste]

Kenneth Lane 1964

Schedule extraction over time W\ /) NN\ S Sw//]
at an increment (bench-phase) \\ \M/ // \\ '3\8\\_5/ ; //
level using a dynamic \\ N // \\ N/ //

programming approach that A\ /4 \ \ s //

maximizes net-present value \ — / \ \__‘_________,/
while satisfying constraints.

Step 2. Production Scheduling.



Phase Design and Production Scheduling
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{c) Clusters (d) Immediate Precedences



Can this be done with integer programming’?
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Why we are not considering uncertainty (for now)

« Size of mines = exact optimization is intractable

« Ultimate goal = stochastic version, but even the deterministic
version is approximated for solving

 Many approaches use elaborate heuristics for obtaining good
solutions, but unfortunately obtaining optimality guarantees
seems impractical

« Solving deterministic instances to provable optimality, can be
used to evaluate scenarios, or as an oracle to other optimization
routines



Phase Design Formulation



Phase Design Formulation

Tyt € {0,1}  Extract block “b” in time “t”
Yv.d,t € [U, 1] Proportion of “b"” sent to “d” in “t”

I t t
Zmb,t <1 Vb Zmb,s < Zma,.s \V’({I, b)
t=1 s=1 s=1

+ Resource consumption constraints that limit extraction per period and
tons of material sent to each destination (mill, waste-pile, etc.).



Production Scheduling Formulation



Production Scheduling Formulation

Le,t = [0, 1] Percentage of cluster ‘c’ extracted in time 't'

Each cluster is a bench-phase comprised of multiple blocks

\”\ el /.f / “ / Entirety of a cluster constraint:

TS T

G /—/Ca/—[ T 7

(I I £’ . ] ]
If iuster C’ is a predecessor of cluster ‘d’ then: Ny A vy
T
E :Jf'd-,i >0 = E :$c,t =1 —r—"
t=1 t=1 N O 7




Tricky integrality condition

N

:I:Cl,t S mCQ,t S ﬂjc;;,t ‘r"’pﬂg,f} > 0 = $cg,t — 1

mﬂg,t > 0 :} ﬂ:ﬂl,t — 1



Production Scheduling Formulation

Yv.d,t € [0, 1] Percentage of block ‘b’ sent to destination ‘d" in time 't

Each cluster is made up of several individual blocks

' Cl; ; b1 | b2 | b3 | b4
\ Clae / Clas X

Blocks in the same cluster must be
extracted simultaneously: But destination decisions are made

/ for each block individually!

Lot = Z Yb.d.t Vb e c



S.t.
;t:c,t:Zyb}d,t forallce C,bec, teT
deD
Z&’“Cvtgl forallce C
teT
ch?t < ch’rt for all (¢,d) € A, 7 €T
t=—1 t=1
Yp.dt = 0 forallbe B,de D,teT
TetyYb.d.t integral. forallce C,bec,de D,t €T

Very large multi-modal, batch RCPSP problem with funny integrality constraints, and
possibly mean side-constraints (G).



SCALE

2-10 million blocks

1-5 elements of interest
2-5 destinations
20-100 time periods



Size of Full Formulations

Phase Design Production Scheduling

_ Periods  Blocks  Variables  Clusters  Blocks  Variables |
calbuco 21 5,016,971 316,069,173 324 200,241 12,615,183
chaiten 25 339,199 16,959,950 273 288,073 14,403,650
guallatari 21 1,672,198 105,348,474 272 57,527 3,624,201
kd 12 14,153 339,672 53 10,128 243,072
marvinm| 20 53,271 2,130,840 56 8,515 340,600
mclaughlin 20 2,140,342 85,613,680 173 180,749 7,229,960
mclaughlinlimit 15 112,687 3,380,610 166 110,768 3,323,040
palomo 40 772,800 61,824,000 74 190,319 15,225,520
ranokau 81 1,873,035 303,431,670 186 317,907 51,500,934
tronador 20 329,859 18,801,963 220 30,099 1,805,940

Espinoza, Goycoolea, Moreno, Newman. MineLib: A library of Open Pit Mining Problems. Annals of OR (2012).




Size of Full Formulations

.. PhaseDesign | Production Scheduling
~ Periods Blocks Variables  Clusters Blocks Variables
calbuco 21 5,016,971 316,069,173 324 200,241 12,615,183

*** CPLEX ERROR 1001: Out of memory.

mclaughlin 20 2,140,342 85,613,680 173 180,749 7,229,960
mclaughlinlimit 15 112,687 3,380,610 166 110,768 3,323,040
palomo 40 772,800 61,824,000 74 190,319 15,225,520
ranokau 81 1,873,035 303,431,670 186 317,907 51,500,934
tronador 20 329,859 18,801,963 220 30,099 1,805,940

Espinoza, Goycoolea, Moreno, Newman. MineLib: A library of Open Pit Mining Problems. Annals of OR (2012).




Solving large problems: A MIP approach.

Pre-Processing
Specialized Linear Programming Solvers

Heuristics

Cutting-Planes

Branching

O - Open A specialized solver designed to solve a broad
M - Mine class of scheduling problems using open MIP
P - Planner techniques.

BARRICK NEWMONT



First ingredient: a powertul LP-Solver

(must be able to solve very large problems quickly)



S.t.
;t:c,t:Zyb}d,t forallce C,bec, teT
deD
Z&’“Cvtgl forallce C
teT
ch?t < ch’rt for all (¢,d) € A, 7 €T
t=—1 t=—1
Gy <g
Yp.dt = 0 forallbe B,de D,teT
TetyYb.d.t integral. forallce C,bec,de D,t €T

Very large multi-modal, batch RCPSP problem with funny integrality constraints, and
possibly mean side-constraints (G).



A useful change of variables

Period 1 Period 3
\ \

0 0 0 1 0 0

Y11 Y21 Yv1,2 Y22 Yb1,3 Yb,2.3

|

0 0 0 1 1 1

<b,1,1 <b,2.1 <b,1,2 <b,2,2 <b,1,3 <b,2.3



A useful change of variables

Zh.dt < 2b.d+1.t
oDt S Zb1 41
ze.pr <1

Zb.Dt < Za. Dot

Wet = 2bDt VOEC

Hz<h

t—1

D
Z Yb.,i,5 + Zybrz,t
71=1

=1

t = Zby,D.t if bl,bz cC




An equivalent formulation

max c-z
s.t. z; < z; V(i,j) €l

Hz <h
0<2z2<1



An equivalent formulation

N
Imax C- 2
s.t. z. < z:. V(i.17)el
Hz <h Max closure problem

Milions () < SN

Hundreds



An equivalent formulation

s.t. z. < z:. V(i.17)el
_ ) ¢ J ( 73) y
Hz <h Max closure problem

vilions () < 5 SN

Hundreds

Suitable for a decomposition method

We name the “easy” constraints Az < b



Dantzig-Wolfe Decomposition

Master Problem  (lower bound) Pricing Problem (upper bound)

max c'VA
max c'v— u(Hv — h)

S.t.
HVA<h, (u>0) .1
1-A=1, Av<b
0 <A
In the mining problem:
V - [‘Ul, | ‘Uk] Pricing is max-closure problem

. "Easy" to solve, using Hochbaum’s
Av* <b Pseudoflow algorithm.



Effectiveness of Dantzig-Wolf Decomposition

Phase Design Production Scheduling
DW DW
calbuco 2h 28m 8s
chaiten 9h 34m 15s
guallatari 733.94 5s
kd 11s 250ms
marvinml 14s 380ms
mclaughlin 48m 2S
mclaughlinlimit Om 1s
palomo 1h 30m 3s
ranokau 3d Oh 42m 20m 30s
tampakan 1788.18 5s




Effectiveness of Dantzig-Wolf Stabilization

Phase Design Production Scheduling
DW DW+S DW DW+S
calbuco 2h 28m 40m 8s 13s
chaiten 9h 34m 2h 27m 15s 17s
guallatari 733.94 315.06 5s 8s
kd 11s 8s 250ms 320ms
marvinml 14s 10s 380ms 700ms
mclaughlin 48m 15m 2S 2S
mclaughlinlimit Om 4m 35s 1s 1s
palomo 1h 30m| 36m 42s 3s 3s
ranokau 3d Oh 42m| 10h 52m 20m 30s 14m
tampakan 1788.18 534.09 5s 5s

In-Out Separation and Column Generation Stabilization by Dual Price Smoothing. Pessoa et al. 2013



Solving the Linear Programming relaxation

Available online at www.sciencedirect.com

N P CeMMPUIGCErs &
*.” ScienceDirect EPEFEEIERNS

reseErcEh

Computers & Operations Research 36 (2009) 1064 - 1089
www.elsevier.com/locate/cor

LP-based disaggregation approaches to solving the open pit mining
production scheduling problem with block processing selectivity

Natashia Boland?, Irina Dumitrescu®*, Gary Froyland®, Ambros M. Gleixner®

ADepartment of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
bSchool of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
CInstitut fiir Mathematik, Technische Universitit Berlin, D-10623 Berlin, Germany

Available online 14 December 2007

Abstract

Given a discretisation of an orebody as a block model, the open pit mining production scheduling problem (OPMPSP) consists of
finding the sequence in which the blocks should be removed from the pit, over the lifetime of the mine, such that the net present value
(NPV) of the operation is maximised. In practice, due to the large number of blocks and precedence constraints linking them, blocks
are typically aggregated to form larger scheduling units. We aim to solve the OPMPSP, formulated as a mixed integer programme
(MIP), so that aggregates are used to schedule the mining process, while individual blocks are used for processing decisions. We
propose an iterative disaggregation method that refines the aggregates (with respect to processing) up to the point where the refined
aggregates defined for processing produce the same optimal solution for the linear programming (LP) relaxation of the MIP as the
optimal solution of the LP relaxation with individual block processing. We propose several strategies of creating refined aggregates
for the MIP processing, using duality results and exploiting the problem structure. These refined aggregates allow the solution of
very large problems in reasonable time with very high solution quality in terms of NPV.
© 2007 Elsevier Ltd. All rights reserved.

A New LP Algorithm for Precedence Constrained Production
Scheduling

Daniel Bienstock® Mark Zuckerberg!

August, 2009
Version Tues Aug 18 09:41:12 AEST 2009

Abstract

The precedence constrained production scheduling problem is the problem of scheduling
the performance of jobs over a number of scheduling periods subject to precedence constraints
among the jobs. The jobs can each be performed in a number of ways, and it also needs to be
determined which processing option (or options) is to be chosen for each job. There can also be
arbitrary side constraints among these variables. The side constraints typically represent either
period capacity constraints, or profile constraints on the aggregate product produced in each
period.

These problems, as they occur in the mining industry, typically have a small number of
side constraints - often well under 100, but may contain millions of jobs and tens of millions of
precedences. Thus despite the fact that the integrality gap is often small in practice, the LP
itself is beyond the practical reach of commercial software.

We present a new iterative lagrangian-based algorithm for solving the LP relaxation of this
problem. This algorithm can be proven to converge to optimality and in practice we have found
that even for problems with millions of variables and tens of millions of constraints, convergence
to proved optimality is usually obtained in under 20 iterations, with each iteration requiring
only a few seconds to solve with current computer hardware.

Specialized Lagrangian-Based algorithm for solving precedence-constrained problems.




The BZ algorithm: idea

Master Problem  (lower bound)

max c'(v, + V)
s.t.
A(vo +VA) <b,
H(vo+VA) < h, (p>0)

[’Um V] Can be almost anything

|deally, spanned linear space
should contain all past
generated columns

Pricing Problem (upper bound)

max c'v— u(Hv — h)
s.t.
Av < b

In the mining problem:

Pricing is max-closure problem

"Easy" to solve, using Hochbaum’s

Pseudoflow algorithm.



The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




The BZ algorithm




Effectiveness of BZ algorithm

Phase Design

Production Scheduling

DW DW+S BZ DW DW+S BZ
calbuco 2h 28m 40m 11m 40s 8s 13s 10s
chaiten 9h 34m 2h 27m 26m 55s 15s 17s 10s
guallatari 733.94 315.06 1m 50s 5s 8s 4s
kd 11s 8s 2S 250ms 320ms 200ms
marvinml 14s 10s 3s 380ms /00ms 500ms
mclaughlin 48m 15m 4m 40s 2S 2S 2S
mclaughlinlimit Om 4m 35s 1m 30s 1s 1s 1s
palomo 1h 30m| 36m 42s 11m 3s 3s 3s
ranokau 3d Oh 42m  10h 52m 9h 39m| 20m 30s 14m 8m 40s
tampakan 30m 8m 50s 2m /s 5s 5s 3s




Speeding up the BZ algorithm:

Zhdt < 2b.d+1.t

Zb,D .t < Zb,1,t+1

z <1 o
oD, 1" = zi < zj V(i,7)
<b,Dt < Za,D.t

Wet = 2bDt VOEC

0 0 0 1 1 1

<b,1,1 <b,2,1 <b,1,2 <b,2,2 <b,1.3 <b,2,3



Common Structure in Production Scheduling

Yb.d t

S TN N

Sub-structure of precedence graph



A closure In the precedence graph

max c'z
2, <z; V(i,j)€eA
2 S {011}

S TN N

Each path either does not touch the closure, or, is cut into two pieces



A significantly smaller graph

—

»
»

Sub-structure of precedence graph




Effect of path compression

Number of Nodes

Before After
calbuco 12,615,183 6,804
chaiten 14,403,650 6,825
guallatari 3,624,201 5,712
kd 243,072 636
marvinml| 340,600 1,120
mclaughlin 7,229,960 3,460
mclaughlinlimit 3,323,040 2,490
palomo 15,225,520 2,960
ranokau 51,500,934 15,066
tronador 1,805,940 4,400

M., Espinoza, Goycoolea, Moreno, Queyranne, Rivera. COAP (2017).
A study of the Bienstock-Zuckerberg algorithm, Applications in Mining and Resource Constrained Project Scheduling.




Second ingredient: Cutting-Planes

(designed to exploit problem-specific structures)



calbuco
chaiten

guallatari

kd

marvinmi
mclaughlin |
mclaughlinlimit

palomo
ranokau
tronador

Geo Mean

Gap relative to the best known lower bound (feasible solution)

Gap without adding any cuts

Phase Design

102.06%
100.33%
101.22%
100.87%
102.49%
100.21%
100.16%
101.10%
102.22%
102.47%
101.31%

Production Scheduling

108.28%
117.26%
102.02%
101.75%
105.75%
102.52%
102.39%
114.87%
131.48%
108.84%
109.17%



Early-Start Cuts

(Gaupp (2008), Lambert et al. (2014) and many others)

Classical variable elimination method

/

/

To extract this block, we need to extract
everything above it. This results in an earliest
possible extraction time for the block.




Chque Cuts

(proposed originally for the single knapsack case Boyd (1993))

This Is more than can be extracted in
time “t” or before [brown region].

ybl,t _I_ ybg,t S 1 \

If the sum is greater than one it is because

all of the brown region was extracted Yb, .t -+ Yb, ¢ -+ (I < 1
in “t” or before. ’ ’ ’



Chque Cuts

(proposed originally for the single knapsack case Boyd (1993))

t

If ¢, and ¢, are such that: Yo w =) U

c’ecl(cy)Ucl(cz2) t'=1

t
Z(l‘cl,t' + ey ) <1 s valid

t'=1



Chque Cuts

(proposed originally for the single knapsack case Boyd (1993))

The inequalities can be easily generalized to
any group of clusters c,, C,,..., C,



Diamond Cuts

(similar to Zhu et al. (2000) for resource constrained scheduling)

The Intersection of closure and reverse closure of
two clusters induce a “lag” between their extraction



Gap after adding Extraction cuts

calbuco 108.28% 108.28%
chaiten 117.26% 100.88%
guallatari 102.02% 100.87%
kd 101.75% 101.75%
marvinml 105.75% 103.06%
mclaughlin - 102.52% 102.52%
mclaughlinlimit  102.39%  102.39%
palomo - 114.87%  111.37%
ranokau 131.48% 104.96%
tronador 108.84% 100.90%
Geo. Mean 109.17% 103.65%

Gap relative to the best known lower bound (feasible solution)



VRHS Cuts

(combines precedences and production capacities)

The following inequality is always valid:

t
Z A y,dr < Uj ZCI:C,T.

beb(rcl(c)) T=1




VRHS Cuts

(combines precedences and production capacities)

lts most general version:

—1 n
( >: >:Q'byb,d,t) + z Ay qpYb.d,t T Z Z QoYn.dt < Z 5kwck,t
k=1

k=1 \c€Aj bec bcc, cercl(cy,)\{cn} bEC

S




Hour-Glass Cuts

for each block b e B :

xp = proportion of block b that is extracted,

Yp,w = proportion of block b that is sent to waste dump, B — —
_ . . _ C =cl(b)\ {b}
Yb.p = proportion of block b that is sent to processing.
qp = tonnage of block b.

constraints :

Z WYp,p < U

beB B

Tb = Yvbw T Yp,w Vb e B

v, >0=>2, =1 Vbc C=clb)\ {b}

assume q(C) > U
then

25(q(C) + g —U) < Z Qb Yb,w
beC



Hour-Glass Cuts

for each block b e B :

xp = proportion of block b that is extracted,

Yp,w = proportion of block b that is sent to waste dump, B - —
_ . . _ C =cl(b)\ {b}

Yb.p = proportion of block b that is sent to processing.

qp = tonnage of block b.

constraints :

Z WYp,p < U

beB B

Tb = Yvb,w T Yp,w Vb e B

v >0=1,=1 Vbe C=cl(b)\{b}
v <1=x,=0 Vbe D =rcl(b)\ {b}
assume q(C) > U

then




calbuco
chaiten

guallatari

kd

marvinml
mclaughlin |
mclaughlinlimit

palomo
ranokau
tronador

Geo. Mean

Gap after adding different classes of cuts

No Cuts | E. Cuts | P. Cuts | All Cuts

108.28%
117.26%
102.02%
101.75%
105.75%
102.52%
102.39%
114.87%
131.48%
108.84%
109.17%

108.28%
100.88%
100.87%
101.75%
103.06%
102.52%
102.39%
111.37%
104.96%
100.90%
103.65%

102.42%
109.23%
101.09%
100.21%
101.10%
100.34%
100.25%
103.62%
105.20%
104.00%
102.71%

102.42%
100.00%
100.54%
100.21%
100.61%
100.34%
100.25%
101.26%
101.82%
100.80%
100.82%

Gap relative to the best known lower bound (feasible solution)

Rivera, Espinoza, Goycoolea, Moreno, M., Submitted (2018). Available upon request.



Third ingredient: Heuristics



opoSort Heuristic

(uses LP solution to guide a greedy algorithm)

E Tt < 1 Interpret x as “probability”
teT

1 ik
Eld =) tap, | +(T+1) (1) tx,
t=1 t=1

Expected extraction time

Topologically sort the clusters, and break-ties using this weight.



1-Dest Heuristic

* |f blending is present, TopoSort might output an
iInfeasible schedule.

* As an alternative, for Production Scheduling, we use the
LP solution to fix destinations and then use a MIP solver
on the reduced instance



Computational Results



Effectiveness of the Overall Approach
(Phase Design)

******************************* Gap |  Time
calbuco 206%  13m5s
chaiten 0.33% 26m 555
guallatari 1.22% 2m 16s
kd 0.87% 2.85’
marvinmi 2.49% 455
mclaughlin 0.21% 4m 5531
mclaughlinlimit 0.16% 1m 36s
palomo 1.10% 12m 12s
ranokau 2.22% 9nh 39m 13 s

tronador 2.47% 3m 13s
Geo Mean 1.31% |



Effectiveness of the Overall Approach
(Production Scheduling)

calbuco 2.70% 2.37%
chaiten 0.00% 0.00%
guallatari 0.63% 0.36%
kd 0.26% 0.00%
marvinml 0.71% 0.00%
mclaughlin 0.66% 0.41%
mclaughlinlimit  0.37% 0.01%
palomo 2.43% 1.33%
ranokau 2.06% 2.06%
tronador 0.80% 0.32%
Geo. Mean 1.06% 0.68%

Final GAP for Production Scheduling Problem,
obtained combining heuristics, cuts, and branching.



Effectiveness of the Overall Approach
(Production Scheduling)

-~ LP(B2) LP + Cuts 1-Dest BB4
calbuco 10s 4m 42.9s 1m 3.9s > 4h
chaiten 9.9s 1lm 26.4s 5m 41.4s 8.1s
guallatari 3.5s 23.4s 5m 26.7s > 4h
kd 0.25 0.95 0.7s 38.55
marvinml 0.4s 2S 2.4s 15m
mclaughlin 2.1s 12.4s 6.3s > 4h
mclaughlinlimit ~ 1.1s 5.25 5.95 2h 19m
palomo 3.4s 29.6s 21.7s > 4h
ranokau 9m 19.8s 6m 12.6s 13m 9.3s > 4h
tronador | 2.9s 9.8s 17.5s > 4h

C implementation, CPLEX 12.6, Linux 2.6.32 x86 64, four 8-core
Intel R Xeon R E5-2670 processors and 128 Gb of RAM



Effectiveness of the Overall Approach

Our instances also include versions with:
*  Minimum processing constraints

* Flow balance constraints
(production cannot change drastically)

* Blending

The methodology shows the same behaviour



Final thoughts

- Mine Planning is a challenging problem that is becoming
tractable thanks to the community of researchers

- Combining new and old technigues we can obtain opfimality
guarantees in moderate times in the deterministic setting

- Current efforts are being made to successfully include
stockpiling and better connectivity constraints

- We hope this can be used as a building block in more ambitious
problems such as Stochastic Integer Programming models



Thank you!



