Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

Stochastic Programming with Recourse for Aircraft Separation under Uncertainty

Jérémy Omer École Polytechnique de Montréal and GERAD

January 23, 2015

INTRODUCTION

CONTEXT AND MOTIVATION

DETERMINISTIC MODEL

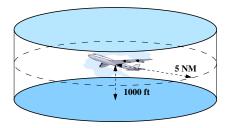
MODELING AND SOLVING THE STOCHASTIC PROBLEM

RESULTS

DISCUSSION

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

CONTEXT	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	00	0


Context

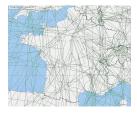
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CONTEXT	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	00	0

AIR TRAFFIC MANAGEMENT

- Shared civilian airspace
- Double need for safety

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


 ... and economical efficiency : time and fuel optimal trajectories

AS A CONSEQUENCE...

Air traffic management (ATM) is necessary

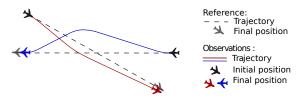
► Airspace is organized in routes and flight levels (1000 ft)

- ► Flight plans have to be followed
- Short term air traffic control (ATC) on control sectors (15 min)
- ► Sectors' capacities ⇒ delays and suboptimal flight levels

AUTOMATION OF ATC

Official forecasts plan a continuous growth of air traffic

- Airspace capacity is already saturated
- Major cost impact of capacity on delay costs [Lehouillier et al., 2014]


Automation of aircraft separation can increase capacity:

- ► Find suitable options in really difficult situations
- Explicitly introduce uncertainties

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

TWO-DIMENSIONAL SEPARATION WITH RECOVERY

- En-route control: not in the vicinity of an airport
- Altitude is stabilized \Rightarrow 2D problem
 - Heading and speed changes
- ► Recovery of reference trajectory after maneuvers

 Minimization of a criterion representing delay and fuel consumption

CONTEXT	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
0000	000	00000000	00	0

ERRORS IN TRACKING TRAJECTORIES

Only consider environmental factors in this study

- ► The reference trajectory is an initial prediction
- Only consider environmental sources of uncertainties
 - Simplified effect of the wind: $\mathbf{v}_{ground} = \mathbf{v}_{air} + \mathbf{w}$

- Flight management systems ensure only lateral tracking Errors on wind predictions ⇒ longitudinal errors
- Precision of the speed measures are impacted by variations in temperature and pressure

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

DETERMINISTIC MODEL

・ロト・(型ト・(ヨト・(ロト))
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</li

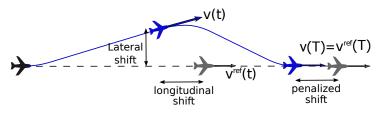
Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	•••	00000000	00	0

CONSTRAINTS ON THE AIRCRAFT'S MOTIONS

Set \mathcal{A} of aircraft, time horizon TSet \mathcal{C} of pairs of aircraft in potential conflict Variables for $A_i \in \mathcal{A}$: position \mathbf{p}_i , speed \mathbf{v}_i , acceleration \mathbf{u}_i

Bounds on the norm of speed

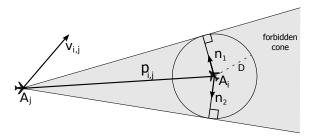
 $V_i^{\min} \le \|\mathbf{v}_i(t)\| \le V_i^{\max}, \forall A_i \in \mathcal{A}, \forall t \in [0;T]$


- ► Comfort limits on variations of speed V_i and heading χ_i $\left|\dot{V}_i(t)\right| \leq U^{\max}$ et $|\dot{\chi}_i(t)| \leq \omega^{\max}, \forall A_i \in \mathcal{A}, \forall t \in [0;T]$
- ► Separation according to the required horizontal distance $\|\mathbf{p}_j(t) - \mathbf{p}_i(t)\| \ge D, \forall (A_i, A_j) \in C, \forall t \in [0; T]$

OBJECTIVE FUNCTION AND TRAJECTORY RECOVERY

► Fuel consumption on the time horizon Assuming constant mass and altitude:

$$C_{t,i}(t) = c_{1,i} \left(1 + \frac{V_i(t)}{c_{2,i}} \right) \left(\alpha_{F_{T,i}} V_i(t)^2 + \frac{\beta_{F_{T,i}}}{V_i(t)^2} \right)$$


- Recovery of the reference trajectory
 - Recovery of reference planned speed
 - ► No lateral deviation at time *T*
 - Longitudinal gap at time *T* is penalized

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

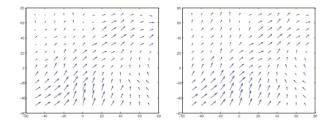
LINEAR MODEL WITH ONE SPEED VECTOR CHANGE

➤ Conflict resolution with one set of simultaneous maneuvers ⇒ separation constraint is simplified

• One disjunction per conflict with two linear constraints $\langle \mathbf{v}_{ii} | \mathbf{n}_1 \rangle \ge M \delta_{ii}$ and $\langle \mathbf{v}_{ii} | \mathbf{n}_2 \rangle \ge M(1 - \delta_{ii})$

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	00	0

STOCHASTIC SEPARATION


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	●0000000	00	0

MODELING THE UNCERTAINTIES DUE TO WIND

Errors on wind prediction can be quantified [Cole, 1998]

- ► Gaussian isotropic wind field **w**(**p**, *t*)
- Zero mean and strongly correlated in time and space

Wind map at *t* (left) and $t + 15 \min$ (right)

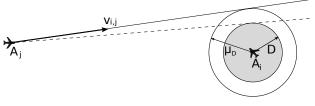
Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	00	0

ERRORS ON SPEED MEASURES

One continuous random variable per aircraft: ϵ_i

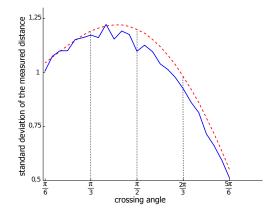
• Zero mean, normal distribution with standard deviation σ_{ϵ}

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 めんぐ


- Error is constant on the time horizon
- Independence between aircraft

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

ROBUST SEPARATION


Compute a margin on separation distance to ensure a low probability of conflict

- \Rightarrow require an analytical expression of conflict probability \mathbb{P}_C
 - ► Done with gaussian and independent errors [Irvine, 2003]
 - Approach \mathbb{P}_C with $\mathbb{P}(d(\tau_{ij}) < D)$
 - τ_{ij} : time when d_{\min} is reached without errors
 - Short term \Rightarrow assumption of constant and uniform wind $\Rightarrow d(\tau_{ij}) \sim \mathcal{N}(\mu_d, \sigma_d)$: μ_d = minimal distance without errors
 - Set μ_d such that $\mathbb{P}_C = 1\%$

Context Deterministic	C MODEL STOCHASTIC SEPARATION 00000000	Results 00	Discussion 0

QUALITY OF THE APPROXIMATION

(ロト・四ト・ヨト・ヨト・日)

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	00000000	00	0

HOW TO IMPLEMENT A CONTROL WITH UNCERTAINTIES?

- ► The starting time of the maneuvers reflects a compromise
 - The robust required distance grows with anticipation
 - ► The amplitude of maneuvers follows the opposite tendency
- The number of control instructions has to remain small

TESTED STRATEGIES

- 1. One maneuver per aircraft with a fixed anticipation time equal to 7 minutes
- 2. Multiple maneuvers computed with a receding horizon
 - Sampling period = 1 minute, prediction horizon = 15 minutes
 - Errors are taken into account as they occur
- 3. Two maneuvers, the second being corrective
 - ► First maneuver with a 5 to 10 minutes anticipation
 - Second recourse maneuver as late as possible
 - ⇒ Model in the framework of two-stage stochastic programming with recourse

STOCHASTIC OPTIMIZATION WITH RECOURSE

How to model a recourse action?

- Consider the possibility of future actions while computing actions that should be started now
- ► Future is uncertain → expected value of the cost of probable recourse actions

$$\min_{\mathbf{x}\in\mathcal{X}}\mathbf{c}_x^T\mathbf{x} + \mathbb{E}\left(Q(\mathbf{x},\boldsymbol{\xi})\right)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 めんぐ

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	Results	DISCUSSION
00000	000	000000000	00	0

STOCHASTIC LINEAR PROGRAMMING MODEL

- ► Sample the continuous distribution of error with *N* Monte-Carlo simulations
- Recourse maneuvers should be only corrective, so:
 - No binary variable in second stage for the separation
 - The recourse is linearized assuming small modifications

 \Rightarrow Benders decomposition is natural for such structure

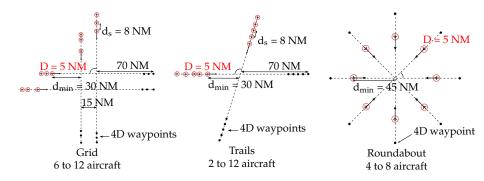
00000 000 0000000 00 0	Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
	00000	000	00000000	00	0

BENDERS DECOMPOSITION

Master problem	Sub-problems
$ \min_{\mathbf{x} \in \mathcal{X}} \mathbf{c}^T \mathbf{x} + \theta \\ \text{sous} \mathbf{A} \mathbf{x} = \mathbf{b} \\ \theta \ge \sum_{n=1}^N \boldsymbol{\pi}_l^n (\mathbf{h}^n - \mathbf{T}^n \mathbf{x}), \forall l $	$ \min_{\mathbf{y} \ge 0} \frac{1}{N} (\mathbf{q})^T \mathbf{y} $ sous $\mathbf{W} \mathbf{y} = \mathbf{h}^n - \mathbf{T}^n \hat{\mathbf{x}}_L $

- ▶ Solution of *N* sub-problems \rightarrow one aggregated cut in MP
- One additional cut reflecting that the cost should be greater than in the deterministic scenario

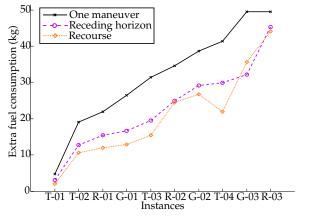
・ロト < 団ト < 三ト < 三ト < 三ト < ロト


Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	00	0

RESULTS

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DESRIPTION OF THE BENCHMARK


- Monte-Carlo sampling is done with 100 scenarios
- ► Results are averaged over 1000 simulations per instance

▲ロト ▲帰 ト ▲ ヨ ト ▲ 目 目 めんぐ

Context	DETERMINISTIC MODEL	STOCHASTIC SEPARATION	RESULTS	DISCUSSION
00000	000	00000000	0.	0

COMPUTATIONAL RESULTS

- Every instance is solved in less than 20 seconds
- The probability of unsolved conflict is respected

Context 00000	Deterministic model 000	STOCHASTIC SEPARATION 000000000	Results 00	DISCUSSION •

DISCUSSION

- 1. Benders decomposition is efficient for the recourse model ⇒ The two-stage model seems to be a good compromise
- 2. Current operational context: only one instruction ⇒ Use Monte-Carlo sampling in a robust program
 - Find one maneuver per aircraft
 - Identify the optimal starting time for maneuvers
- 3. The literature on the sources of uncertainty is very thin
 - Add "human-in-the-loop" uncertainties with simple assumptions
 - Include errors in the realization of maneuvers
- 4. Run the tests on dynamic situations
 - Aircraft constantly enter and leave control sectors

Cole, Richard, Kim et Bailey

An assessment of the 60 km Rapid Update Cycle (RUC) with near real-time aircraft reports

Project Report NASA/A-1, 1998

Irvine

Target miss distance to achieve a required probability of conflict *FAA/Eurocontrol R&D Seminar*, 2003

Chaloulos et Lygeros

Effect of wind correlation on aircraft conflict probability AIAA Journal of Guidance, Control, and Dynamics, 2007

Vela et al.

A two-stage stochastic optimization model for air traffic conflict resolution under wind uncertainty

・ロト < 団ト < 三ト < 三ト < 三ト < ロト

IEEE/AIAA Digital Avionics Systems Conference, 2009