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The Chuquicamata open pitis 5 x 3 km large and 1 km deep,
Is the largest metal mine of the world.




Marmato (Caldas, Colombia).
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The information (given an initial profile of the mine) in the data base for our
purposes is essentially:

« coordinates (X, Y, 2)

« grade at each block (% of Copper/Total mass) and
« other characteristics



THE PROBLEM

Given an estimation of the value distribution In situ, one
needs to schedule the portions of the mine to be extracted at
each period, which the aim is to find an optimal sequence of
extraction.

There are two frameworks for this problem:

|. acontinuous approach (in a functional space).
[1. a discrete optimization model



. CONTINUOUS APPROACH
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Figure: Sketch of a vertical section for a feasible profile
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Il. DISCRETE APPROACH

The objective of the planning is to determine an optimal sequence
of extraction, satisfying production capacity at each period and

geotechnical constraints.
The blocks represents physical units of extraction.

Cubes 20x20x20 m3
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Objective:

Given an estimation of the value (grade), the decision-maker
needs to decide the economic sequence of blocks, satisfying

 Capacities (extraction, transport, process...)

« Wall slope of the pit (stability)

 Waste/ore rate

* Destinations of the blocks (plant, stock, waste, ...)
* EXposed ore

This gives rise to (very) large (linear) binary Optimization
problems.



Blocks are represented by nodes

and precedence relations are represented by arcs
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Figure: Precedence relationship between blocks



Definition:

PIT is a set of nodes, closed with respect to the precedence arcs.
If P={j/(@i,j)eA}, then ieG'= jeG' VjeP

PIT\




FIRST PROBLEM: to find the volume of interest

Sub - Graph G’ Graph G
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If P={j/(i,j)eA} then ieG'= jeG VjeP

FINAL PIT = MAXIMAL CLOSURE

To find a sub-graph satisfying the precedence relations and
having maximal benefice.



The static problem (maximal closure)

1 block i belongs to the chosen set
0 block i doest not belong to the chosen set

(FOP) Max Z b.x

ieN

x,—-x,20 (7,))e4

.)C?- — 0 or l F = _I_?\’T.

The total capacity constraint could be added to the model.:



The capacitated static problem

(CFOP) Max Y bx,

ieN

x,—x,20 (i,))e4d

ZX,:SC

LEN

x, =0orl e N.



SECOND PROBLEM:

dynamic version (more realistic)

Sub-Graph G’ Graph G

SEQUENCE =

To find a feasible sequence of blocks having maximal
discounted value.



For this new model (considering sequence),

we define decision variables:

1 if block i is extracted at time t
! O if block 1 Is not extracted at time t




The dynamic problem (sequencing problem)

T
(CDOP) Max > > Ly

x; =0orl ieN,t=1---.T.



1. The first one is the Final Open Pit (FOP) problem, which aims to
find the region of maximal economic value for exploitation under
some geotechnical stability constraints.

2. The second one is the Capacitated Final Open Pit (CFOP)
which considers an additional constraint on the total capacity for
the previous formulation.

3. The multi-period version, which we call here the Capacitated
Dynamic Open Pit (CDOP) problem, with the goal of finding an
optimal sequence of extracted volumes in a certain finite time
horizon for bounded capacities at each period.



Let Skop, Scrop @aNd Sepop be the sets of blocks contained iIn
the solution of these 3 previous problems, respectively.

Seop - Final Open Pit (FOP)
Scrop Capacitated Final Open Pit (CFOP)
Scpop Capacitated Dynamic Open Pit (CDOP)
Property:

Scrop S Orop

Scoor S Srop



Comments:

Combinatorial nature of the precedence relationship:
mathematical formulation based on block models uses graph
theory and integer programming

Pioneer works: Lerchs and Grossman algorithm (1965, graph
approach) and Picard’s network flow approach, 1976.

Real world mines can produce large scale instances having
several millions of variables and constraints.

In practice greedy-type strategies are not optimal and
heuristics (combined with B&B and LP relaxations) must be
applied to tackle those huge problems.



OPEN PIT SCHEDULING WITH EXPOSED ORE RESERVE

Motivation:

In open pit extraction, usually one needs to remove material with
poor economic value (waste) to give access to more economically
profitable material.

An unmined block is said to be exposed at the beginning of a given
period If its precedent blocks have been all extracted.

The problem that this work addresses is the design of a block
schedule, with the additional constraint of leaving enough exposed
ore reserve that is readily available at the start of the period.

Our approach is particularly useful in mines having
disseminated or irregular ore distribution.
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Optimizing open-pit block scheduling
with exposed ore reserve

by J. Saavedra-Rosas*, E. JélvezT, J. Amaya#*, and
N. Morales?

Synopsis

A crucial problem in the open pit mining industry is to determine the
optimal block scheduling, defining how the orebody will be sequenced for
exploitation. An orebody is often comprised of several thousand or million
blocks and the scheduling models for this structure are very complex,
giving rise to very large combinatorial linear problems. Operational mine
plans are usually produced on a yearly basis and further scheduling is
attempted to provide monthly, weekly, and daily schedules. A portion of
the ore reserve is said to be exposed if it is readily available for extraction
at the start of the period. In this paper, an integer programming (IP) model
is presented to generate pit designs under exposed ore reserve
requirements, as an extension of the classical optimization models for
mine planning. For this purpose, we introduce a set of new binary
variables, representing which blocks can be declared as exposed ore
reserve, in addition to the extraction and processing decisions. The model
has been coded and tested in a set of standard instances, showing very
encouraging results in the generation of operational block schedules.

Keywords
block scheduling, surface mining, open pit planning, optimization model,
exposed ore reserve.
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Extraction Period

0 | Unmined blocks

1 | Extracted blocks at period 1

2 | Extracted blocks at period 2

. Extracted blocks at period 3

2 | Exposed ore reserve at period 1 and extracted at period 2

3 | Exposed ore reserve at period 2 and extracted at period 3




Set of blocks

Set of precedence arcs

Time horizon (number of periods)

Profit resulting from the mining of block i at period t
Cost of mining and processing block i at period ¢t
Cost of mining block i at period ¢t

Maximum mining capacity for period t

Maximum processing capacity for period t

Minimum exposed ore reserve required at period t (as metal)
Tonnage of block i

Ore grade of block i

Cut-off grade to define minimum exposed ore reserve requirement



Three types of variables are used in the model, all of them are binary. The first type is the variable
associated to the extraction for processing purposes for each block

£ {1 if block i is extracted and processed at time t
‘0 otherwise

The second variable type describes the decision relating to the disposal of a block by sending it to the
waste dump

E {1 if block i is extracted and sent to waste dump at time t
" {0 otherwise

The third variable type is used to identify exposed blocks; throughout the paper it will indistinctively
be called “visibility” or “exposure” variable

t_ {1 if block i is exposed at time t
Vi =10 otherwise

7 = {Ai if A; 2 )\Cg
) otherwise.



T
(OPBS —EO) max > > [(bf — p)xi — miwf]
1

IEB t=

Z(xit+wit)S1 ViERB

t=1

Zri(x§+wf) < M vte{l,..,T}
i€EB

Zrixf < Pt vte{l,..,T}
iEB

t t
vi +Z(xis +w’) < Z(xjs + st) vV(i,j)eA te{l,..,T}
s=1 s=1

yitgxi“'l vieB, te{l,.. T—1}
Zriiiyitz Ft vte{l,..,T—1}
i€EB

xb,wl,yt € {0,1} VieB, te{l,..,T}

(1)

(2)

(3)

(4)

(5)

(6)

(7)



Marvin case study

* This block model contains 53,271 blocks of 30 X%
30 x 30 meters.

* \We consider T=7 periods

 The wall slope requirements are given by a
45° slope angle



RESULTS: Comparison of production plans for the Marvin case study.

OPBS: standard model

OPBS-EO: our model, with exposed ore

.

582,605,720
629,312,551
523,828,567
a4 162523
371,571,924
— 304,876,581
191,140,416
3,047,498,282

Discounted value

OPBS-EO

329,142,653
463,833,658
586,467,752
494,561,419
398,567,122
339,961,783

273,394,271

2,885,928,658
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OPBS OPBS-EO

Grade

Period %

1.03
1.14
1.05
1.02
0.97
0.92

0.88

EN

Ore Ton

19,994,670
19,971,010
19,980,880
19,985,340
19,999,920
19,999,290

15,535,850

135,466,960

Total Ton

59,989,965
49,490,568
40,052,602
44,985,249
49,166,274
52,191,380

46,060,989

341,937,027

Exposed Grade

Ton

359
1,462
4,719
7,969
6,254

20,363

%

0.72

0.92

1.14

1.09

1.14

1.14

1.47

Ore Ton

19,999,638
19,966,980
19,985,370
19,987,840
19,990,580
19,992,410

15,516,740

135,439,558

Total Ton

59,891,451
45,939,352
39,798,429
42,930,865
52,232,416
46,784,718

16,587,549

304,164,781

Exposed
Ton

0
100,134
100,055
100,026
100,099
100,362
100,159

600,835



Two stage resolution approach

- First initial solution (Ferland)

- Solving the optimization problem starting from this warm solution



Monolithic approach

Solve the problem directly
without apply any heuristic
method

Hard to be solved.

Two stage approach

First solve the problem using a
greedy strategy (period by period)
to find a feasible solution.

Then put this solution in
optimization solver to start the
B&B from there.

Comparison in terms of NPV,
computation time and optimality
gap 1s interesting. ..



To generate an initial solution, solve a sequence of sub problems |

lassomated with each period t =

., T inincreasing order of t |

T
(OPBS — EO) max Z Z[(bi‘ —pHxf —miwf]

i€EB t=1

T
Z(xf +wf) <1
t=1

Zri(xit +wh) = m?

i€EB

T,xf < Pt
ieB

t t
yi+ Z(xf +wd) < Z(xfs +w)
s=1 s=1

t t+1
Vi =X

Z T Ayl = Ft

iEB

xf,wf,yf €{0,1}

Vi€ERB

vte{l.. T}

vte{l,.. T}

v(i,j)eEA te{l,..,T}

vieB, tefl,.., T—1}

vte{l,..,T—1}

vieB, te{l,..,T}

(1)

(2)

(3)

(4)

(5)

(6)

(7)

B' blocks not extracted yet

Mmax

S.t.




To generate an initial solution, solve a sequence of sub problems |
lassomated with each period t =1,...,T inincreasing order of t :

max Y[ (b} - p})% ~miw After solving the sub problem t,
we obtain the values of the
variables for period t as follows:

Y+ X, W, <5+ (i.§)eAicB X=1 = x=landw =0
SrdyzF

i_eB_ t . W:l — W landX —O
W,y €{0.1) 1B

x*=landw™ =0

B"*=B'-{ieB':x =lorw=lory/ =1}

Yi:l —

Also, denote the total weight of the exposed blocks determined in period t

= ZTi Yit
ieB!




Results for Marvin 2D case

Monolithic approach Two stage approach

First feasible solution (Ferland)

NPV  :133,982,359 NPV  :131,366,038
Time (s): 166 Time (s): 4
Gap (%): 0.999 Gap (%): 7.2

After MIPStart solution
« NPV :133,865,904
* Time (s): 150

« Gap (%): 0.999



Results for Marvin 2D

Monolithic approach Two stage approach

111111111111111111
1111111111111111
11111111111111
111111111111
1111111111
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111111111

11111111
11111111
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Conclusions

« The new model is very close the classical one in terms
of discounted value.

* The tons of mineral are also very similar

« The model with reserve generates a more regular
production planning

* The model with reserve also permits a more efficient use
of the processing plant, avoiding idle times at the
beginning of each period



THANK YOU



Generating an initial feasible solution

1. Stage:

Find the final pit (LP problem), and then delete the blocks not included
In It.

From this stage, we work with the residual graph.

2. Pre-processing:

For each block 1, define the first period in which the block could be
mined. Let t; that period. Then we can fix:

x> =0 forall s<t

To calculate t; we define N = {j € Npp / there is a path from i to j}.
This represent the cone over block 7. Then %; is given by:

t
t; = min{t / Z pi < Z C}

:" ':_:.-"I'l-'ldi- k=)



3. Pre-processing: Redefine benefits:

Other definitions of b; could be envisaged.
Example: The total benefit contained in the cone-above.

4. Apply Greedy algorithm with these new benefits.

(Ferland et al, in: Studies in Computational Intelligence, Springer Verlag, 2007 )



