
Open Pit Block Scheduling with 
Exposed Ore Reserve

Jorge Amaya

University of Chile

October, 2017

Joint work with J. Ferland and E. Jélvez



The Chuquicamata open pit is 5 x 3 km large and 1 km deep, 

is the largest metal mine of the world.

Copper mine



Marmato (Caldas, Colombia).

Gold mine



The information (given an initial profile of the mine) in the data base for our 

purposes is essentially: 

• coordinates (x, y, z)

• grade at each block (% of Copper/Total mass) and 

• other characteristics



THE PROBLEM

Given an estimation of the value distribution in situ, one

needs to schedule the portions of the mine to be extracted at

each period, which the aim is to find an optimal sequence of

extraction.

There are two frameworks for this problem:

I. a continuous approach (in a functional space).

II. a discrete optimization model
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Cubes 20x20x20 m3

II. DISCRETE APPROACH

The objective of the planning is to determine an optimal sequence
of extraction, satisfying production capacity at each period and
geotechnical constraints.

The blocks represents physical units of extraction.



Block model

Idealized 
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Objective:

Given an estimation of the value (grade), the decision-maker

needs to decide the economic sequence of blocks, satisfying

•Capacities (extraction, transport, process…)

•Wall slope of the pit (stability)

•Waste/ore rate

•Destinations of the blocks (plant, stock, waste, …)

•Exposed ore

This gives rise to (very) large (linear) binary Optimization

problems.



Revenue bi (block i)

Predecessors

Maximal 

slope

Blocks are represented by nodes 

and precedence relations are represented by arcs



Predecessors
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PIT

  ii PjGjGiA jijP      ''    then   ,),( /   If

Definition: 

PIT is a set of nodes, closed with respect to the precedence arcs.

j jj



Graph GSub - Graph G’

FINAL PIT     MAXIMAL CLOSURE

To find a sub-graph satisfying the precedence relations and 

having maximal benefice. 

FIRST PROBLEM: to find the volume of interest

  ii PjGjGiA jijP      ''    then   ,),( /   If
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The static problem (maximal closure)

The total capacity constraint could be added to the model:

(FOP)



The capacitated static problem

(CFOP)



Graph GSub-Graph G’
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SEQUENCE    

To find a feasible sequence of blocks having maximal 

discounted value. 

SECOND PROBLEM: 

dynamic version (more realistic)








ti

ti
xt

i
  at  time  extractednot  is  block    if     0

  at  time  extracted  is  block    if      1

For this new model (considering sequence),  

we define decision variables: 



The dynamic problem (sequencing problem)

(CDOP)



1. The first one is the Final Open Pit (FOP) problem, which aims to

find the region of maximal economic value for exploitation under

some geotechnical stability constraints.

2. The second one is the Capacitated Final Open Pit (CFOP)

which considers an additional constraint on the total capacity for

the previous formulation.

3. The multi-period version, which we call here the Capacitated

Dynamic Open Pit (CDOP) problem, with the goal of finding an

optimal sequence of extracted volumes in a certain finite time

horizon for bounded capacities at each period.



Let SFOP, SCFOP and SCDOP be the sets of blocks contained in

the solution of these 3 previous problems, respectively.

SFOP : Final Open Pit (FOP)

SCFOP : Capacitated Final Open Pit (CFOP)

SCDOP : Capacitated Dynamic Open Pit (CDOP)

Property:

FOPCFOP SS 

FOPCDOP SS 



Comments:

• Combinatorial nature of the precedence relationship: 

mathematical formulation based on block models uses graph 

theory and integer programming

• Pioneer works: Lerchs and Grossman algorithm (1965, graph 

approach) and Picard’s network flow approach, 1976.

• Real world mines can produce large scale instances having 

several millions of variables and constraints.

• In practice greedy-type strategies are not optimal and 

heuristics (combined with B&B and LP relaxations) must be 

applied to tackle those huge problems.



OPEN PIT SCHEDULING WITH EXPOSED ORE RESERVE

Motivation:

In open pit extraction, usually one needs to remove material with

poor economic value (waste) to give access to more economically

profitable material.

An unmined block is said to be exposed at the beginning of a given

period if its precedent blocks have been all extracted.

The problem that this work addresses is the design of a block

schedule, with the additional constraint of leaving enough exposed

ore reserve that is readily available at the start of the period.

Our approach is particularly useful in mines having

disseminated or irregular ore distribution.







Symbol Description

𝐵 Set of blocks

𝐴 Set of precedence arcs

𝑇 Time horizon (number of periods)

𝑏𝑖
𝑡 Profit resulting from the mining of block 𝑖 at period 𝑡

𝑝𝑖
𝑡 Cost of mining and processing block 𝑖 at period 𝑡

𝑚𝑖
𝑡 Cost of mining block 𝑖 at period 𝑡

𝑀𝑡 Maximum mining capacity for period 𝑡

𝑃𝑡 Maximum processing capacity for period 𝑡

𝐹𝑡 Minimum exposed ore reserve required at period 𝑡 (as metal)

𝜏𝑖 Tonnage of block 𝑖

𝜆𝑖
Ore grade of block 𝑖

𝜆𝑐𝑔
Cut-off grade to define minimum exposed ore reserve requirement



Three types of variables are used in the model, all of them are binary. The first type is the variable 

associated to the extraction for processing purposes for each block 

 

𝑥𝑖
𝑡 =  

1  if block 𝑖 is extracted and processed at time 𝑡
0 otherwise                                                                   

 

 

The second variable type describes the decision relating to the disposal of a block by sending it to the 

waste dump 

 

𝑤𝑖
𝑡 =  

1   if block 𝑖 is extracted and sent to waste dump at time 𝑡
0  otherwise                                                                                     

 

 

The third variable type is used to identify exposed blocks; throughout the paper it will indistinctively 

be called “visibility” or “exposure” variable 

 

𝑦𝑖
𝑡 =  

1 if block 𝑖 is exposed at time 𝑡
0 otherwise                                    

 

𝜆 𝑖 =  
𝜆𝑖          𝑖𝑓 𝜆𝑖 ≥  λ𝑐𝑔

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  
 



 𝐎𝐏𝐁𝐒 − 𝐄𝐎      𝑚𝑎𝑥     𝑏𝑖
𝑡 − 𝑝𝑖

𝑡 𝑥𝑖
𝑡 − 𝑚𝑖

𝑡𝑤𝑖
𝑡  

𝑇

𝑡=1𝑖∈𝐵

   

 

   𝑥𝑖
𝑡 + 𝑤𝑖

𝑡 

𝑇

𝑡=1

≤ 1                                              ∀ 𝑖 ∈ 𝐵 ( 1 )  

 

  𝜏𝑖(𝑥𝑖
𝑡 + 𝑤𝑖

𝑡)

𝑖∈𝐵

≤ 𝑀𝑡                                       ∀ 𝑡 ∈ {1, … , 𝑇} ( 2 )  

 

  𝜏𝑖𝑥𝑖
𝑡

𝑖∈𝐵

≤ 𝑃𝑡                                                       ∀ 𝑡 ∈ {1, … , 𝑇} ( 3 )  

 

 𝑦𝑖
𝑡 +   𝑥𝑖

𝑠 + 𝑤𝑖
𝑠 

𝑡

𝑠=1

≤    𝑥𝑗
𝑠 + 𝑤𝑗

𝑠 

𝑡

𝑠=1

          ∀  𝑖, 𝑗 ∈ 𝐴,   𝑡 ∈ {1, … , 𝑇} ( 4 )  

 

 𝑦𝑖
𝑡 ≤ 𝑥𝑖

𝑡+1                                                           ∀ 𝑖 ∈ 𝐵,   𝑡 ∈ {1, … , 𝑇 − 1} ( 5 )  

 

  𝜏𝑖𝜆 𝑖
𝑖∈𝐵

𝑦𝑖
𝑡 ≥  𝐹𝑡                                               ∀ 𝑡 ∈ {1, … , 𝑇 − 1} ( 6 )  

 

 𝑥𝑖
𝑡 , 𝑤𝑖

𝑡 , 𝑦𝑖
𝑡  ∈  0,1                                        ∀ 𝑖 ∈ 𝐵,   𝑡 ∈ {1, … , 𝑇} ( 7 )  

 



Marvin case study

• This block model contains 53,271 blocks of 30 ×
30 × 30 meters.

• We consider T=7 periods

• The wall slope requirements are given by a

45° slope angle



RESULTS: Comparison of production plans for the Marvin case study.

Discounted value

Period OPBS OPBS-EO

1 582,605,720 329,142,653

2 629,312,551 463,833,658

3 523,828,567 586,467,752

4 444,162,523 494,561,419

5 371,571,924 398,567,122

6 304,876,581 339,961,783

7 191,140,416 273,394,271

Total NPV 3,047,498,282 2,885,928,658

OPBS: standard model

OPBS-EO: our model, with exposed ore
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OPBS OPBS-EO

Period
Grade 

%
Ore Ton Total Ton

Exposed

Ton

Grade 

%
Ore Ton Total Ton

Exposed

Ton

1 1.03 19,994,670 59,989,965 0 0.72 19,999,638 59,891,451 0

2 1.14 19,971,010 49,490,568 0 0.92 19,966,980 45,939,352 100,134

3 1.05 19,980,880 40,052,602 359 1.14 19,985,370 39,798,429 100,055

4 1.02 19,985,340 44,985,249 1,462 1.09 19,987,840 42,930,865 100,026

5 0.97 19,999,920 49,166,274 4,719 1.14 19,990,580 52,232,416 100,099

6 0.92 19,999,290 52,191,380 7,569 1.14 19,992,410 46,784,718 100,362

7 0.88 15,535,850 46,060,989 6,254 1.47 15,516,740 16,587,549 100,159

Total 135,466,960 341,937,027 20,363 135,439,558 304,164,781 600,835



Two stage resolution approach

- First initial solution (Ferland)

- Solving the optimization problem starting from this warm solution



Monolithic approach

Solve the problem directly 

without apply any heuristic 

method

Hard to be solved.

Two stage approach

First solve the problem using a 
greedy strategy (period by period) 
to find a feasible solution.

Then put this solution in 
optimization solver to start the 
B&B from there.

Comparison in terms of NPV, 
computation time and optimality 
gap is interesting…



 𝐎𝐏𝐁𝐒 − 𝐄𝐎      𝑚𝑎𝑥     𝑏𝑖
𝑡 − 𝑝𝑖

𝑡 𝑥𝑖
𝑡 − 𝑚𝑖

𝑡𝑤𝑖
𝑡  

𝑇

𝑡=1𝑖∈𝐵

   

 

   𝑥𝑖
𝑡 + 𝑤𝑖

𝑡 

𝑇

𝑡=1

≤ 1                                              ∀ 𝑖 ∈ 𝐵 ( 1 )  

 

  𝜏𝑖(𝑥𝑖
𝑡 + 𝑤𝑖

𝑡)

𝑖∈𝐵

≤ 𝑀𝑡                                       ∀ 𝑡 ∈ {1, … , 𝑇} ( 2 )  

 

  𝜏𝑖𝑥𝑖
𝑡

𝑖∈𝐵

≤ 𝑃𝑡                                                       ∀ 𝑡 ∈ {1, … , 𝑇} ( 3 )  

 

 𝑦𝑖
𝑡 +   𝑥𝑖

𝑠 + 𝑤𝑖
𝑠 

𝑡

𝑠=1

≤    𝑥𝑗
𝑠 + 𝑤𝑗

𝑠 

𝑡

𝑠=1

          ∀  𝑖, 𝑗 ∈ 𝐴,   𝑡 ∈ {1, … , 𝑇} ( 4 )  

 

 𝑦𝑖
𝑡 ≤ 𝑥𝑖

𝑡+1                                                           ∀ 𝑖 ∈ 𝐵,   𝑡 ∈ {1, … , 𝑇 − 1} ( 5 )  

 

  𝜏𝑖𝜆 𝑖
𝑖∈𝐵

𝑦𝑖
𝑡 ≥  𝐹𝑡                                               ∀ 𝑡 ∈ {1, … , 𝑇 − 1} ( 6 )  

 

 𝑥𝑖
𝑡 , 𝑤𝑖

𝑡 , 𝑦𝑖
𝑡  ∈  0,1                                        ∀ 𝑖 ∈ 𝐵,   𝑡 ∈ {1, … , 𝑇} ( 7 )  

 

To generate an initial solution, solve a sequence of sub problems 

associated with each period 1, ,  in increasing order of t T t
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we obtain the values of the 

variables for period  as follows: 
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Also, denote the total weight of the exposed blocks determined in period  t
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Results for Marvin 2D case

Monolithic approach

NPV      : 133,982,359

Time (s): 166

Gap (%): 0.999  

Two stage approach

First feasible solution (Ferland)

NPV      : 131,366,038

Time (s): 4

Gap (%): 7.2

After MIPStart solution

• NPV      : 133,865,904

• Time (s): 150

• Gap (%): 0.999  



Results for Marvin 2D

Monolithic approach Two stage approach



Conclusions

• The new model is very close the classical one in terms 

of discounted value.

• The tons of mineral are also very similar

• The model with reserve generates a more regular 

production planning

• The model with reserve also permits a more efficient use 

of the processing plant, avoiding idle times at the 

beginning of  each period



THANK YOUS



Generating an initial feasible solution

1. Stage:

Find the final pit (LP problem), and then delete the blocks not included

in it. 

From this stage, we work with the residual graph.

2. Pre-processing: 

For each block i, define the first period in which the block could be 

mined.  Let ti that period. Then we can fix: 

i

s

i tsx    allfor    0



3. Pre-processing:  Redefine benefits: 

4. Apply Greedy algorithm with these new benefits.

(Ferland et al, in: Studies in Computational Intelligence, Springer Verlag, 2007 )

Other definitions of 𝑏𝑖
∗ could be envisaged. 

Example: The total benefit contained in the cone-above.


