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The Chuquicamata open pit is 5 x 3 km large and 1 km deep,
and is the largest metal mine of the world.
Copper mine




Marmato (Caldas, Colombia).
Gold mine
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The information in the data base for our purposes is essentially:
e coordinates (X, Y, 2)

- grade at each block (% of Copper/Total mass) and other
characteristics



THE PROBLEM

Given an estimation of the value distribution in situ,
one needs to schedule the portions of the mine to be
extracted at each period, which the aim is to find an
economic seqguence of extraction.

We show two frameworks:

* a discrete optimization model (binary decision
variables), and

* a continuous approach (posed In an appropriate
functional space).



. DISCRETE APPROACH

The objective of the planning Is to determine an optimal
sequence of extraction, satisfying production capacity at each
period and geotechnlcal constraints.

The blocks represents physical units of extraction.

Cubes 20x20x20 m3
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Objective: mine planning in open pit mines

Given an estimation of the value (grade), the decision-maker
needs to decide the economic sequence of blocks, satisfying

« Capacities (extraction, transport, process...)
« Wall slope of the pit (stability)

A more general model can include the conditions
 Waste/ore rate
* Destinations of the blocks (plant, stock, process...)

This gives rise to (very) large (linear) binary Optimization
problems.



Blocks are represented by nodes
and precedence relations are represented by arcs

Maximn

slope

Predecessons

Revenue b; (block )






Definition:

PIT is a set of nodes, closed with respect to the precedence arcs.

If P={j/(@,j)eA}, then ieG'= jeG VjeP




Consider a set BB of blocks. Block j being a predecessor of block i
(because of the slope constraints) is denoted as

i<
A set P C B is said to be a pit whenever

reP AN j=i = JjeP
For each i € B an economic benefit/value v; € R and a tonnage (or
weight) w; > 0.
The value of subset S C B is denoted as

v(S) = Z Vi

=
Similarly, the weight of S is

w(S) = Z W;

=)



If P and P’ are pits, then so are PU P and PN P’ \

Union: if b€ PUP’ and b’ is another block such that b" < b, then either
beP=beP=bePUPFP, orsimilarly if b€ P’ then b’ e PUPF".

A maximum value pit is a pit P such that v(P) is maximum over all
possible pits.

Ultimate Pit

The ultimate pit or final pit is a maximum value pit P* such that if P is
a maximum value pit then P C P*.

The existence and unicity of P* follows from the closure property (union).



Dynamic Problem: Pit Sequences

Nested sequence

A sequence of pits (P;)¢>1 is said nested if for any t > 1 we have that

Pr_lcpr

If S = (Pt)e>1 is a nested sequence of pits, we define the associated
phases as the sequence F(S) = (F¢)r>1 given by

Fr::Pr\Pr_l

where Py = ) so that F; = P;.

Remark: P; = P;_y U F;.



FIRST PROBLEM
Sub - Graph G’ Graph G
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If P={j/(i,j)eA}, then ieG'=jeG VjeP

FINAL PIT = MAXIMAL CLOSURE
To find a sub-graph satisfying the precedence relations and

maximal benefice.



First model: The static problem (maximal closure)

1 block i belongs to the chosen set
0 block I doest not belong to the chosen set

(FOP) Max Z bx

ieN

x.—x,20 (1,))ed

:’C?- = O or l ? = i?\"r.

The total capacity constraint could be added to the model:



The capacitated static problem

(CFOP) Max ) bx,

ieN

x,—x,20 (1,j)e 4

inSC

LEN

x, =0orl e N.



SECOND (more realistic) PROBLEM

Sub-Graph G’ Graph G

SEQUENCE =

To find a feasible sequence of blocks having maximal
discounted value.
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Figure: Precedence relationship between blocks
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New model (considering sequence):

1 if block i is extracted at time t
! O if block 1 I1snotextracted at time t




The dynamic problem (sequencing problem)

(CDOP) Max > > !

Y pxi<C, o t=1--T

x; =0orl ieN,t=1---.T.



Generally speaking, three different problems are usually considered by
mining engineers for the economic valuation, design and planning of
open pit mines.

1. The first one is the Final Open Pit (FOP) problem, which aims to
find the region of maximal economic value for exploitation under
some geotechnical stability constraints.

2. The second one is the Capacitated Final Open Pit (CFOP) which
considers an additional constraint on the total capacity for the
previous formulation.

3. The multi-period version, which we call here the Capacitated
Dynamic Open Pit (CDOP) problem, with the goal of finding an
optimal sequence of extracted volumes In a certain finite time
horizon for bounded capacities at each period.



Let Seop, Scrop @Nd Sepop be the sets of blocks contained in
the solution of these 3 previous problems, respectively.

Skop - Final Open Pit (FOP)
Scrop Capacitated Final Open Pit (CFOP)
Scpop Capacitated Dynamic Open Pit (CDOP)

Property:  Scrop & Srop

Scoor S Srop



@ Several problems:
- Final Open Pit: one period and unbounded capacity.
- Capacitated Final Open Pit: one period but bounded total capacity.
- Capacitated Dynamic Open Pit: multiperiod scheduling problem.

@ Combinatorial nature of the precedence relationship: Mathematical
formulation based on block models uses Graph Theory and Integer
Programming. Pioneering works: the Lerchs-Grossmann graph
theoretic algorithm (1965) and Picard’s network flow method (1976).

@ Real-world mines produce large scale instances with hundreds of
thousands of variables and constraints.

@ [n practice greedy-type strategies are not optimal. Suboptimal
solutions are obtained by means of MLIP techniques (LP relaxations
and Branch-and-Bound algorithms), also genetic-type algorithms.



Mathematical model: resolution

a. Linear programming
b. Branch and Bound

c. Heuristics: Greedy, Local search, Relaxation and Expected period of
extraction

d. Pre-processing: eliminating variables and redundancies, via final pit or
first period of possible extraction

Main possible (and relevant) extensions

a. Robust optimization (large number of instances due to sampling
process of random data)

b. Multiple destinations of blocks (very large number of variables and
constraints)

c. Multi-mine (several mines, sharing plant facilities, some capacities and
demands)

d. Optimal scheduling with reserve
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Open Pit Block Scheduling with Exposed Ore Reserve

T
(OPBSEM) max » " [(bf — pD)xi — miw]]
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Three types of variables are used in the model, all of them are binary. The first type Is the variable
associated to the extraction for processing purposes for each block

r {1 if block i is extracted and processed at time ¢
‘0 otherwise

The second variable type describes the decision relating to the disposal of a block by sending it to the
waste dump

t_ {1 if block i is extracted and sent to waste dump at time t
‘W0 otherwise

The third variable type is used to identify exposed blocks; throughout the paper it will indistinctively
be called “visibility” or “exposure” variable

t_ {1 if block i is exposed at time ¢
‘0 otherwise



Generating an initial feasible solution

1. Stage:

Find the final pit (LP problem), and then delete the blocks not included
In It.

From this stage, we work with the residual graph.

2. Pre-processing:

For each block 1, define the first period in which the block could be
mined. Let t; that period. Then we can fix:

x> =0 forall s<t

To calculate t; we define N = {j € Ngp / there is a path from i to j}.
This represent the cone over block 7. Then #; is given by:

t
t, = min{t / Z p; < Z Ci}

|-|l ':_:.-"I"-'Id,‘i_- fe=()



3. Pre-processing: Redefine benefits:

Other definitions of b; could be envisaged.
Example: The total benefit contained in the cone-above.

4. Apply Greedy algorithm with these new benefits.

(Ferland et al, in: Studies in Computational Intelligence, Springer Verlag, 2007 )



A scalable approach to optimal block scheduling
J. Amaya, D. Espinoza, M. Goycoolea, E. Moreno, Th. Prévost, E. Rubio
Proceedings APCOM2009, Applications of Computers on Mining Industry,
Vancouver, Canada, 2009.

A critical aspect of long-term open-pit mine planning consists In
computing a production schedule based upon a block sequencing
strategy.

Here we describe a scalable IP-based methodology for solving very
large (millions of blocks) instances of this problem.

We show that embedding standard IP technologies in a local-search
based algorithm we are able to obtain near-optimal solutions to large
problems in reasonable time. This methodology has been tested in
several mine wide block models.



Notation: Xt . { 1 if blocki hasbeenextracted by timet
' i — | 0 otherwise.

Resource-Constraint Pit Optimization Problem (RC-PIT)

max i > bi(xl—x)

t=1 ieN

t t+1 : : ..
X, <X - consistency of the variabledetinition

X : < xj. wall - slope (or precedence) condition

' t t—1 t . .
Z q ; (-xf — X, ) <c . resource r available attime ¢

ic N



Improving feasible solutions: a local search heuristic

Given a current feasible solution (the first one could be proposed by
the Greedy Algorithm) we define a neighborhood of a given block and
then we re-optimize over this subset.

This can be accomplished using the formulation described before and

adding additional constraints to ensure that blocks outside the chosen
neighborhood remain at their original values.

How to choose the neighborhood for pertubation?



Cone-above strategy: Consider a block i, and define P(i) as the cone of
all blocks which are predecessors of i.

In order to find a local improvement to a solution, we randomly select a
block 1 and find the best solution in the P(i)-neighborhood of as
Indicated above.

Blocks extracted in
the initial solution

Blocks re-optimized

Blocks not extracted in
the original solution

Block considered




Periods strategy: Consider time periods t and ¢, and a solution
vector.

In order to find a local improvement of solution we randomly select
a pair of time periods (the distance between them not too large) and
re-optimize to find the best solution in that neighborhood.

t
_____ — ) ,
Re-optimize S— !
between two
(close) levels




Table 1. Description of the ore bodies used for the study.

Name # Blocks Grade range | Observations
0.03-1.46 %CL flctltlo_us copper gold ore
Marvin 61x60x17 0.1-1.2 ppm bod_y mclude_d In the :
o Whittle 4X mine planning
Au
software
0) . - i
AmericaMine | 61x42x60 % Cu : 0.08 ha_rd rock polymetallic
3.68 mine
AsiaMine | 112x230x38 | 0-1.919 cu | -olymetallic ore body
with a pipe shape
Copper molybdenum ore
0.02364% | S0 S depostlocated a
Andina 184x269x121 | Cu X .
50 Km north of Santiago.
0-0.42 % Mo )
Typical porphyry copper
ore body




Table 2. Description of the test set instances used for the study.

N.Blocks Real Blocks PP, N. Periods
Blocks
Marvin 61x60x17 53668 8553 13
AmericaMine 61x42x60 19320 6445 18
AsiaMine 112x230x38 772800 97900 15
Andina 184x269x121 4320480 3340898 15

Table 3. Summary of Local Search performance after running 4 hours.

Gershon LOC(ZI r?g;mh LP relaxation LP time
Marvin 1.0 1.08 1.09 26 min
AmericaMine 1.0 1.15 1.15 19 min
AsiaMine 1.0 1.23 1.24 4h 13 min
Andina 1.0 1.15 Unknown Unknown




1. ACONTINUOUS APPROACH

(Alvarez, Amaya, Griewank, Strogies, in Math. Methods for Op. Res., 2011)

We propose here a continuous approach which allows for a
refined 1mposition of slope constraints associated with
geotechnical stability.

The model introduced here Is posed In a suitable functional
space, essentially the real-valued functions that are Lipschitz
continuous on a given two dimensional bounded region.

We derive existence results and investigate some qualitative
properties of the solutions.



Figure: Sketch of a vertical section for a feasible profile

The bi-dimensional domain Q is supposed to be bounded.

The profil p belongsto C(Q2), the Banach space of continuous real
valued functions, equipped with the supremum norm.



Definition of Stable Profile Functions

@ Given a bounded, regular and connected domain 2 C R2.

@ Stable Profile: continuous function p : Q — R fulfilling

@ Nonegativity condition:

p(x) — po(x) > 0 for x € Q
e Dirichlet boundary condition:

p(x) — po(x) = 0 for x € 00

o Boundedness:
p(x) € £ =[z.Z]

@ Local stability condition:

Ap(x) = limsup p(%) = p(X)]

et N,
xR H}’C _5":”

< w(x, p(x))

with w : Q x Z — R, is a given bounded function.



Feasible set

Definition

P={pe C(2) | pis a stable profile} is called the set of feasible profiles.

Remark: If p € P then ||[Vp(x)|| < w(x. p(x)) for a.e. x € Q.

If w(x,z) is concave w.r.t. z, then P is convex.

Proposition 1

If wis u.s.c. then P is compact in (C(Q), || - ||oc).

Sketch of Proof

Obviously P is bounded and equicontinuous. Closedness of P can be
shown by contradiction. For this, the u.s.c. of w is necessary.




Stationary Effort and Objective Functions

Gain Function: Effort Function:

p2(x) p2(x)

(o) = [ [ elx.z)inc E(lprpal) = [ [ elx.2)dz

Q pi(x) 2 py(x)

with g € L>(Q x Z) with e € L> and e(x.z) > ey > 0

Final Open Pit Problem - FOP

max{G(p) := G([po,p]) | p € P}

Capacitated Final Open Pit Problem - CFOP

max{G(p) | p € P.E(p) := E([po. pl) < E}




Max > bx ~  Discretecase Final Open Pit (FOP)

x,—x,20 (1,))e 4

x,=0orl ie N.
p(x) Continuous case
Max f f g(x,z)dzdx
Q Jpo(x)

Nonegativity condition:
p(x) — po(x) = 0 for x € Q
Dirichlet boundary condition:
p(x) — po(x) = 0 for x € OQ2
Boundedness:
p(x) € £ = [z.2]
Local stability condition:

Ap(x) = limsup |P(X) — p(X) < w(x. p(x))

i~ ~
X—» X4—X ||X - XH

with w : Q x Z — R, is a given bounded function.




Capacitated Final Open Pit (CFOP)

Discrete case: We add the condition

inﬁc

LEN

Continuous case: We add the condition

p(x) _
E(p) = j j e(x,z)dzdx < E
Q Jpg

e 1s an “effort function”, lower bounded by a positive constant.




Continuity, differentiability and convexity

@ G is Lipschitz continuous on C(£2) with constant ||g||»|€2|.

o If g is continuous on Q x Z then G(p) is everywhere Fréchet

differentiable. In particular, for any & € C(£2) we have that

()0 = [ elx.pl))olx)d

Similar for E.

@ £ is convex if e is monotonically increasing w.r.t. z.

@ Respectively G is concave if g is monotonically decreasing w.r.t. z.

"




Existence Results for Stationary Problems

Theorem 1 (Existence)

There exist solutions for FOP and CFOP.

Remark: Under realistic conditions, problems FOP and CFOP may be
nonconvex and nondifferentiable.



Dynamic continuous model

Excavation Paths

@ Given the time horizon T > 0 for the mine.

o Feasible Excavation Path: continuous function P : [0, T] — P, so
that p(t, ) := P(t)(-) is a feasible profile, fulfilling

e Monotonicity: P(t) > P(s) for0 <s <t < T
e Dynamic capacity constraint:

r

E([PE). PO < [ c(r)de

5

for 0 < s <t < T and some capacity speed c € L™ ([0, T])

Definition

U={P e C([0, T],P)| P is feasible and P(t) > po for t € [0, T]} is

called set of feasible excavation paths.




Objective Function and Problem Formulation

Discount Function: ¢ € C*([0, T]), » monotonically decreasing,
T"‘.‘(O) — ]__‘ Q(T) < ]_
Typical choice: (1) = e

—at

Dynamic Objective Function :

,
= | ¥ fg X, P(t)(x))dxdP(t)
0
P(T)(x) T P(t)(x)
=o(T) [ [ glx,z)dzdx+ [ [ [ [-¢'(t)]g(x. z)dzdtdx
Q P0)(x) 20 P(0)(x)

Capacitated Dynamic Open Pit Problem - CDOP

max{G(P) | P € U.P(0) = p}




The Capacitated Dynamic Open Pit Problem (CDOP)

P(T)(x) T P(t)(x)
Max o(T) [ [ g(x.z)dzdx+ [ [ [ [—¢'(t)]e(x.z)dzdtdx
P(0)(x) 2.0 P(0)(x)
P(0) = po

{P(t) } is monotone int (embeded profiles)
P(t) is feasible for the static problem, forallt € [0,T]:
Nonegativity condition:
p(x) — po(x) = 0 for x € Q
Dirichlet boundary condition:
p(x) — po(x) = O for x € I

Boundedness:

p(x) € Z = [z.Z]

Local stability condition:

NAp(x) = limsup [p(X) = P(R)| < w(x, p(x))

R—ax+X ||X - XH

with w: Q x Z — R, is a given bounded function.



Structural Properties

If w(x,z) is concave and e(x, z) is constant w.r.t. z, then U/ is convex.

G is Lipschitz continuous on C([0, T] x Q) with constant

2| g]]o[€2].

G is concave on the feasible set of CDOP if g is monotonically
decreasing w.r.t. z.




Existence Results for the Dynamic Problem

Proposition 4

If o is u.s.c. then the set i/ is compact in (C([0, T] x Q).]| - ||oo)-

Sketch of Proof

@ Show

|P(t) = P(s)]loo < (HCHC’D 1 Qﬁ) (t —s)1/3

En T
o Obviously ¢ bounded and closed.
o AA: U is compact

il

There exists a solution for CDOP. l




Main possible and relevant extensions:

« Limiting connections between the discrete and continuous models

« Duality for the open pit continuous model

« Numerical resolution by discretization or reduction to a finite-
dimensional problem

* Properties of the final profile (the value along this profile is equal to
0,a.e.)

* Robust optimization (large number of instances due to sampling
process of random data)

« Multiple destinations of blocks (very large number of variables and
constraints)

« Multi-mine (several mines, sharing: plant facilities, capacities and
demands)

« Optimal scheduling with reserve (at the end of each period, the
available blocks provide a certain amount of ore for the next period)
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