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The Chuquicamata open pit is 5 x 3 km large and 1 km deep,  

and is the largest metal mine of the world. 

Copper mine 



Marmato (Caldas, Colombia). 

Gold mine 



The information in the data base for our purposes is essentially:  

• coordinates (x, y, z)  

• grade at each block (% of Copper/Total mass) and other 

characteristics 



THE PROBLEM 

 

Given an estimation of the value distribution in situ, 

one needs to schedule the portions of the mine to be 

extracted at each period, which the aim is to find an 

economic sequence of extraction. 

    

We  show two frameworks:  

• a discrete optimization model (binary decision 

variables), and  

• a continuous approach (posed in an appropriate 

functional space). 



Cubes 20x20x20 m3 

I.   DISCRETE APPROACH 
The objective of the planning is to determine an optimal 
sequence of extraction, satisfying production capacity at each 
period and geotechnical constraints.  
 
The blocks represents physical units of extraction.  
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Objective: mine planning in open pit mines 
 

Given an estimation of the value (grade), the decision-maker 

needs to decide the economic sequence of blocks, satisfying  

 

•Capacities (extraction, transport, process…) 

•Wall slope of the pit (stability) 

 

A more general model can include the conditions 

•Waste/ore rate  

•Destinations of the blocks (plant, stock, process…) 

 

 

This gives rise to (very) large (linear) binary Optimization 

problems.   
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Blocks are represented by nodes  

and precedence relations are represented by arcs 





PIT 
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Definition:  

PIT is a set of nodes, closed with respect to the precedence arcs. 









Graph G Sub - Graph G’ 

FINAL PIT        MAXIMAL CLOSURE 

To find a sub-graph satisfying the precedence relations and  

maximal benefice.  

FIRST PROBLEM 
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First model: The static problem (maximal closure) 

The total capacity constraint could be added to the model: 

(FOP) 



The capacitated static problem 

(CFOP) 
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SEQUENCE     

To find a feasible sequence of blocks having maximal 

discounted value.  

SECOND (more realistic) PROBLEM 
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  at  time  extractednot  is  block    if     0

  at  time  extracted  is  block    if      1

New model (considering sequence):  



The dynamic problem (sequencing problem) 

(CDOP) 



Generally speaking, three different problems are usually considered by 

mining engineers for the economic valuation,  design and planning of 

open pit mines.  

 

1. The first one is the Final Open Pit  (FOP) problem, which aims to 

find the region of maximal economic value for exploitation under 

some geotechnical stability constraints.  

 

 

2. The second one is the Capacitated Final Open Pit (CFOP)  which 

considers an additional constraint on the total capacity for the 

previous formulation.  

 

 

3. The multi-period version, which we call here the Capacitated 

Dynamic Open Pit (CDOP) problem, with  the goal of finding an 

optimal sequence of extracted volumes in a certain finite time 

horizon for bounded capacities at each period. 



 

Let SFOP, SCFOP and SCDOP be the sets of blocks contained in 

the solution of these 3 previous problems, respectively. 

 

 

  SFOP : Final Open Pit  (FOP) 

SCFOP : Capacitated Final Open Pit (CFOP) 

SCDOP : Capacitated Dynamic Open Pit (CDOP) 

 
 

 

 

Property: 

 

 

 

FOPCFOP SS 

FOPCDOP SS 





a. Linear programming  

b. Branch and Bound 

c. Heuristics: Greedy, Local search, Relaxation and Expected period of 

extraction  

d. Pre-processing: eliminating variables and redundancies, via final pit or 

first period of possible extraction for or  each block. 

Mathematical model: resolution 

Main possible (and relevant) extensions 

a. Robust optimization (large number of instances due to sampling 

process of random data) 

b. Multiple destinations of blocks (very large number of variables and 

constraints) 

c. Multi-mine (several mines, sharing plant facilities, some capacities and 

demands) 

d. Optimal scheduling with reserve 
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Open Pit Block Scheduling with Exposed Ore Reserve 



Three types of variables are used in the model, all of them are binary. The first type is the variable 

associated to the extraction for processing purposes for each block 

 

𝑥𝑖
𝑡 =  

1  if block 𝑖 is extracted and processed at time 𝑡
0 otherwise                                                                   

 

 

The second variable type describes the decision relating to the disposal of a block by sending it to the 

waste dump 

 

𝑤𝑖
𝑡 =  

1   if block 𝑖 is extracted and sent to waste dump at time 𝑡
0  otherwise                                                                                     

 

 

The third variable type is used to identify exposed blocks; throughout the paper it will indistinctively 

be called “visibility” or “exposure” variable 

 

𝑦𝑖
𝑡 =  

1 if block 𝑖 is exposed at time 𝑡
0 otherwise                                    

 



Generating an initial feasible solution 
 

1. Stage:  

Find the final pit (LP problem), and then delete the blocks not included 

in it.  

From this stage, we work with the residual graph. 

 

2. Pre-processing:  

For each block i, define the first period in which the block could be 

mined.  Let ti that period. Then we can fix:  
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3. Pre-processing:  Redefine benefits:  

4. Apply Greedy algorithm with these new benefits. 

(Ferland et al, in: Studies in Computational Intelligence, Springer Verlag, 2007 ) 

Other definitions of  𝑏𝑖
∗ could be envisaged.  

Example: The total benefit contained in the cone-above. 



A scalable approach to optimal block scheduling 
J. Amaya, D. Espinoza, M. Goycoolea, E. Moreno, Th. Prévost, E. Rubio 

Proceedings  APCOM2009, Applications of Computers on Mining Industry, 

Vancouver, Canada, 2009.  
 

A critical aspect of long-term open-pit mine planning consists in 

computing a production schedule based upon a block sequencing 

strategy.  

 

Here we describe a scalable IP-based methodology for solving very 

large (millions of blocks) instances of this problem.  

 

We show that embedding standard IP technologies in a local-search 

based algorithm we are able to obtain near-optimal solutions to large 

problems in reasonable time. This methodology has been tested in 

several mine wide block models.   
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Resource-Constraint Pit Optimization Problem (RC-PIT) 



Improving feasible solutions: a local search heuristic 

 

Given a current feasible solution (the first one could be proposed by 

the Greedy Algorithm) we define a neighborhood of a given block and 

then we re-optimize over this subset.  

 

This can be accomplished using the formulation described before and 

adding additional constraints to ensure that blocks outside the chosen 

neighborhood remain at their original values. 

 

 

 

How to choose the neighborhood for pertubation? 

 

 



Cone-above strategy: Consider a block i, and define P(i) as the cone of 

all blocks which are predecessors of i.  

 

In order to find a local improvement to a solution, we randomly select a 

block i and find the best solution in the P(i)-neighborhood of  as 

indicated above.  



Periods strategy: Consider time periods t and t’, and a solution 

vector.  

 

In order to find a local improvement of solution we randomly select 

a pair of time periods (the distance between them not too large) and 

re-optimize to find the best solution in that neighborhood. 

 

.  

Re-optimize 

between two 

(close) levels 

Block 

t 

t’ 



Name # Blocks Grade range Observations 

Marvin 61x60x17 

0.03-1.46 %Cu 

0.1-1.2 ppm 

Au 

fictitious copper gold ore 

body  included in the 

Whittle 4X mine planning 

software 

AmericaMine 61x42x60 
% Cu : 0.08-

3.68 

hard rock polymetallic 

mine  

AsiaMine 112x230x38 0-1.91 % Cu 
Polymetallic ore body 

with a pipe shape  

Andina 184x269x121 

0.02-3.64 % 

Cu 

0-0.42 % Mo 

Copper molybdenum ore 

body taken from Andina 

Sur Sur deposit located at 

50 Km north of Santiago. 

Typical porphyry copper 

ore body 

Table 1. Description of the ore bodies used for the study. 



N.Blocks Real Blocks 
P.P. 

Blocks 
N. Periods 

Marvin 61x60x17 53668 8553 13 

AmericaMine 61x42x60 19320 6445 18 

AsiaMine 112x230x38 772800 97900 15 

Andina 184x269x121 4320480 3340898 15 

Gershon 
Local Search 

(4 hrs) 
LP relaxation LP time 

Marvin 1.0 1.08 1.09 26 min 

AmericaMine 1.0 1.15 1.15 19 min 

AsiaMine 1.0 1.23 1.24 4h 13 min 

Andina 1.0 1.15 Unknown Unknown 

Table 3. Summary of Local Search performance after running 4 hours. 

Table 2. Description of the test set instances used for the study. 



We propose here a continuous approach which allows for a 

refined imposition of slope constraints associated with 

geotechnical stability.  

 

The model introduced here is posed in a suitable functional 

space, essentially the real-valued functions that are Lipschitz 

continuous on a given two dimensional bounded region.  

 

We derive  existence results and investigate some qualitative 

properties of the solutions. 

II. A CONTINUOUS APPROACH 

 

(Alvarez, Amaya, Griewank, Strogies, in Math. Methods for Op. Res., 2011) 



The bi-dimensional domain  Ω  is supposed to be bounded. 

 

The profil p belongs to           ,  the Banach space of continuous real 

valued functions, equipped with the supremum norm. 
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Discrete case 

Continuous case 

Final Open Pit (FOP) 



Capacitated Final Open Pit (CFOP) 

Discrete case: We add the condition 

Continuous case: We add the condition 

 e is an “effort function”, lower bounded by a positive constant.  







Dynamic continuous model 





Max 

The Capacitated Dynamic Open Pit Problem (CDOP) 







Main possible and relevant extensions: 

 

• Limiting connections between the discrete and continuous models 

• Duality for the open pit continuous model 

• Numerical resolution by discretization or reduction to a finite-

dimensional problem 

• Properties of the final profile (the value along this profile is equal to 

0, a.e. ) 

 

• Robust optimization (large number of instances due to sampling 

process of random data) 

• Multiple destinations of blocks (very large number of variables and 

constraints) 

• Multi-mine (several mines, sharing: plant facilities, capacities and 

demands) 

• Optimal scheduling with reserve (at the end of each period, the 

available blocks provide a certain amount of ore for the next period) 



THANK YOU 


