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Geometallurgy

• A definition:

Geometallurgy combines geological, mining and metallurgical information to create 
spatially-based predictive models for mining, mineral processing and 
metallurgy that can be used to optimize the decisions, given all other key project 
constraints such as environmental restrictions, water availability and energy 
efficiency.

• There have been many efforts to provide an integrated view of processes in the 
mining value chain (geology-throughput, mine to mill, clays-flotation, etc.)



Motivation

• Geometallurgy has an impact in all stages of the mining business, from early 
scoping phase, project feasibility study, project development, operational 
optimization, to mine closure.

• Steps in geometallurgical modeling can be seen as building blocks of a workflow.

• Example:
1. Acquire geochemical data, geological logging, chemical analysis of elements of 

interest and hyperspectral data.
2. Perform metallurgical tests over representative samples taken in different 

domains to understand the performance to a given process.
3. Characterize geometallurgical units related to a given process by clustering 

samples with similar performance into units.
4. Build a spatial model of the geometallurgical units and of the attributes of 

interest using conventional geostatistical tools.
5. Infer the process behavior based on the local characteristics of each block of 

material.

• Application is not linear: needs iterations and many “not so easy” steps
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Application 1: textures characterization and classification

• Link between textures and mineral processing performance
• Make use of drillhole photographic records to automate the texture logging
• Three stages:

• Proof of concept of texture classification
• Further development of algorithms and applications
• Pilot testing with real images 

Databases
• 16 x 6 photos of clean 
textures for proof of concept 
(all labelled)
• Sampling images of 
bubbles distribution in froth 
flotation cells to discriminate 
reagents
• Scanned high resolution
drillcore images of 1200m at 
a porphyry copper deposit



Application 1: textures characterization and classification

• Three stages:
• Proof of concept of texture classification

• A hierarchical classifier with 5 binary steps
• Need to separate “texture” from “structure”
• Features easy to discriminate were 

identified for each binary classifier
• Wavelet and shearlet transforms, total 

variations, filters 
• Similarity: MSE, SSIM, Kullback-Leibler

distance
• Tested in natural rock textures data base and 

image analysis textures data base



Application 1: textures characterization and classification

• Three stages:
• Further development of algorithms and 

applications
• Use of variogram map
• Use of compact variogram
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Application 1: textures characterization and classification

• Three stages:
• Pilot testing with real images
• 14000 images
• 326 samples logged by two geologists
• Procedure

• Automated process (64.0% match)
• Review of misclassification cases
• Preprocessing (filtering and 

normalization)
• Reprocessing (84.8% match)

In conclusion:
• Using the photographs of drillcores is possible.
• We could populate the database with texture classes (up to a % of error), based on 

a very low number of logged textures done by a geologist, and achieve an ~85% 
accuracy.

• Textures could be used for domaining, and their relationship with mineral 
processing performance, could be tested.
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Application 2: modeling of alterations as a proxy for 
flotation behavior

• Link between alteration types and flotation performance in porphyry copper deposits
• Alterations are logged by geologists  label
• Quantitative characterization of each alteration type allows for better prediction of 

flotation performance. Geochemical concentrations are used along with the logged 
alteration types to automate the alteration labelling to get more consistent prediction

Database
• Represents about 10 years of sampling
• Digestion method: Aqua Regia
• Total database: ~ 32.000 samples

• 9 major elements [wt%]
• Al, Mg, K, Ca, Na, S, Cu, Fe and Ti

• 33 trace elements [ppm]



Application 2: modeling of alterations as a proxy for 
flotation behavior

1. Variable selection and aggregation, based on correlation with response

• Several approaches to define most discriminant variables for each alteration type
• Univariate analysis
• Forward selection model

• Synthetic variables are used to highlight features of each alteration
• K*Al highlight sericite/muscovite in phyllic alteration
• Al/Mg highlight Al-rich clays in argillic alteration over the Mg-rich clays dominant 

in other alteration types
• K/(Ca+Na) highlight the exchange of K cations over Ca and Na in potassic

alteration



Application 2: modeling of alterations as a proxy for 
flotation behavior

2. Classification to define geometallurgical units

• Selected geochemical variables are used to classify alterations 
 maximize matching with logged labels
 Identify zones where logging may require revision

• Classification methods
• Max discrim based on single variables
• K-means clustering
• Logistic regression
• Artificial neural networks

• Construct classification tree to label each 
sample

• ROC graphs are used to select best method. 

• Analysis can be completed by using membership functions to describe the 
uncertainty related to the labelling of the alteration type

Database

out of 50 logged out of 61 logged out of 31 logged

out of 30 logged out of 40 logged

Predicted 
Alteration

Logged 
Alteration

Number of 
Data

Average Match:



Application 2: modeling of alterations as a proxy for 
flotation behavior

3. Spatial model of geometallurgical units

• Once individual samples have been 
labelled, they are used to construct a 
spatial model of geometallurgical units

• Done by conventional 3D modeling 
techniques or by means of 
geostatistical methods

Comments:
• Analyzing some sections, we can identify areas where mapping was difficult. These 

drill cores could be re-logged to check the alteration logged, hence improving the 
result

• Alternatively, if matching is high, alteration type could be “predicted” from 
geochemistry only

Logged

Predicted



Application 2: modeling of alterations as a proxy for 
flotation behavior

4. Spatial model of index variables

• Index variables (variables deemed more relevant to predict the response) are 
modeled in space
• Geostatistical cosimulation captures the cross relationship and quantifies 

uncertainty

• Scaling is required to go from the lab assay support to the support that relates to the 
processing rate

5. Predict metallurgical behavior in space

• Relate index variables with geometallurgical response of interest using conventional 
multivariate statistics
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Application 3: accounting for sampling errors and grade 
uncertainty to optimize short term planning 

• Blast hole sampling errors may have a significant economic impact in short term 
planning. 

• In this application, the impact of changing the sampling methodology (from 
conventional BH sampling to advanced RC drilling with automatic sampling) is 
assessed in an open pit mine.

• Several aspects are studied and their economic impact quantified:
• Information quality: effect of sampling error (precision), systematic bias, 

geological interpretation
• Information quantity: effect of advanced RC drilling spacing as compared to BH 

sampling at the blasting spacing.
• Estimation method: effect of implementing kriging Instead of IDW, and 

estimation parameters 

Input Output

x 10
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Input

Output

x 10
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One exhaustive dense simulation
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Samples at a 20 x 20 m grid (no error)
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Samples at a 20 x 20 m grid (with error)
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ID2 estimation samples without error
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Kriging estimation samples without error
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ID2 estimation samples with error
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Kriging estimation samples with error



Application 3: accounting for sampling errors and grade 
uncertainty to optimize short term planning 

• Building blocks:
1. Analyze sampling errors
2. Build 10 simulations of TCu, 

SCu and solubility at block 
support

3. Simulate sampling grids and 
errors in realizations to 
emulate short term planning 
information

4. Estimate block grades using 
samples and compare with 
short term plan considering 
exhaustive knowledge (from 
the dense simulations)

5. Perform economic evaluation
• Estimate recovery (depends on geological unit, clay types)
• Estimate acid consumption (depends on recovery and SCu)
• Assign blocks to plant or waste dump

• Result: Reduced losses amount to 130 million USD over 5 years 
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• Hydrothermal mineral associations, when in contact with water, tend to equilibrium, 
generating physicochemical buffering conditions, in particular pH, Eh, and chemical 
composition. 

• This behavior is not restricted to the mineral deposit; it also occurs when the 
minerals are being processed; e.g. grinding

• Model using a geometallurgical approach

Geochemical 
modeling

Mineral 
composition

Water-rock 
interaction

Comminution 
and flotation 
performance

Application 4: prediction of the effect of water‐rock 
interaction in mineral processing
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Challenges

• Data acquisition, and quality assurance and control in geometallurgical data
• Need for systematic acquisition of relevant data related to elements, minerals, 

and mineral association, grain size, geotechnical parameters, etc. 
• Must be integrated in the current workflows to capture the information value. 
• Richer data (hyperspectral, quantitative mineralogy, quantitative textural models) 

may prove extremely important to understand rock behavior. 
• Need for QA-QC protocols in data acquisition and testing. 

• Insufficient number of data
• Need for proxy assays and measures, to lower the cost of geometallurgical data.

• Insufficient tools to discover relationships by statistical means. 
• Efforts should move towards phenomenological models, with integration of 

geology into the comprehension of mineral processing and metallurgical 
processes.

• Poor metallurgical models. 
• Incomplete understanding of physical and chemical processes that occur within 

each one of the mineral processing and metallurgical stages. 
• Experimental studies as well as theoretical ones, are required to improve the 

knowledge in this area, and scaling is required.



Framework

Joint project
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Wireless Tire 
Pressure Sensor

Arduino

Accelerometer
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Conclusions

• Geometallurgy requires integrating geological knowledge into modeling of mining, 
mineral processing and metallurgical processes

• Linked workflows are helpful to understand what variables and data are relevant to 
improve the predictive model, and reduces the problem to a manageable parcel

• Modeling the full process is useful even when different levels of sophistication are 
used in each step (e.g. complex stochastic spatial model of attributes combined 
with simple predictive model) 

• Extensions to rock breakage, environmental modeling of acid drainage, water and 
energy consumption, etc.

This is mostly an integration step, therefore most of the tools already exist, but 
the expertise to put them together and interpret the results with a combined 
geological, mining and metallurgical understanding remains as the most difficult 
challenge to overcome
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