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Geometallurgy

e A definition:

Geometallurgy combines geological, mining and metallurgical information to create
spatially-based predictive models for mining, mineral processing and
metallurgy that can be used to optimize the decisions, given all other key project
constraints such as environmental restrictions, water availability and energy
efficiency.

 There have been many efforts to provide an integrated view of processes in the
mining value chain (geology-throughput, mine to mill, clays-flotation, etc.)




Motivation

 Geometallurgy has an impact in all stages of the mining business, from early
scoping phase, project feasibility study, project development, operational
optimization, to mine closure.

« Steps in geometallurgical modeling can be seen as building blocks of a workflow.

 Example:

1. Acquire geochemical data, geological logging, chemical analysis of elements of
Interest and hyperspectral data.

2. Perform metallurgical tests over representative samples taken in different
domains to understand the performance to a given process.

3. Characterize geometallurgical units related to a given process by clustering
samples with similar performance into units.

4. Build a spatial model of the geometallurgical units and of the attributes of
Interest using conventional geostatistical tools.

5. Infer the process behavior based on the local characteristics of each block of
material.

» Application is not linear: needs iterations and many “not so easy” steps
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Application 1: textures characterization and classification

* Link between textures and mineral processing performance
* Make use of drillhole photographic records to automate the texture logging
» Three stages:

* Proof of concept of texture classification

e Further development of algorithms and applications

* Pilot testing with real images

Aphanitic Breccia Phaneritic ~ Porphyritic Stockwork Veinlets Databases

e 16 x 6 photos of clean
textures for proof of concept
(all labelled)

o Sampling images of
bubbles distribution in froth
flotation cells to discriminate
reagents

» Scanned high resolution
drillcore images of 1200m at
a porphyry copper deposit




Application 1: textures characterization and classification

 Three stages:
» Proof of concept of texture classification
* A hierarchical classifier with 5 binary steps
* Need to separate “texture” from “structure”
« Features easy to discriminate were
identified for each binary classifier
 Wavelet and shearlet transforms, total
variations, filters
o Similarity: MSE, SSIM, Kullback-Leibler
distance
o Tested in natural rock textures data base and
Image analysis textures data base
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Application 1: textures characterization and classification

 Three stages:
* Further development of algorithms and

applications ;1 N® ,
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Application 1: textures characterization and classification

1280 pixeles

 Three stages:
* Pilot testing with real images
e 14000 images NI T IS 1
« 326 samples logged by two geologists [ ———
e Procedure e s
o Automated process (64.0% match)
* Review of misclassification cases . P e
* Preprocessing (filtering and "5;@ "
normalization) o
* Reprocessing (84.8% match)

In conclusion:

» Using the photographs of drillcores is possible.

* We could populate the database with texture classes (up to a % of error), based on
a very low number of logged textures done by a geologist, and achieve an ~85%
accuracy.

o Textures could be used for domaining, and their relationship with mineral
processing performance, could be tested.
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Application 2: modeling of alterations as a proxy for

flotation behavior

* Link between alteration types and flotation performance in porphyry copper deposits

» Alterations are logged by geologists - label

* Quantitative characterization of each alteration type allows for better prediction of
flotation performance. Geochemical concentrations are used along with the logged
alteration types to automate the alteration labelling to get more consistent prediction

Hydrothermal alterations

B 30
B 31
B 40
B 41

H5
52
61

aggregation

K1

K2
SCC1
SCC2
S1

S2
AA

Potasic Biotitic
Potasic Feldespatic
Chl-Ser-Clay
Chl-Ser-Qz
Ser-Qz
Ser-Qz-Clay
Argillic Supergene

Database
* Represents about 10 years of sampling
* Digestion method: Agua Regia
« Total database: ~ 32.000 samples
* 9 major elements [wt%)]
 Al, Mg, K, Ca, Na, S, Cu, Fe and Ti
o 33 trace elements [ppm]

| of

" GU and index
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Application 2: modeling of alterations as a proxy for

flotation behavior

1. Variable selection and aggregation, based on correlation with response

Mg_pct

Mg_pct
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o Several approaches to define most discriminant variables for each alteration type
e Univariate analysis
* Forward selection model

» Synthetic variables are used to highlight features of each alteration
o K*Al highlight sericite/muscovite in phyllic alteration
« Al/Mg highlight Al-rich clays in argillic alteration over the Mg-rich clays dominant
in other alteration types
« K/(Ca+Na) highlight the exchange of K cations over Ca and Na in potassic
alteration



Application 2: modeling of alterations as a proxy for

flotation behavior

2. Classification to define geometallurgical units

» Selected geochemical variables are used to classify alterations
- maximize matching with logged labels
—> Identify zones where logging may require revision

. . ROC curve 50 vs 61
o Classification methods 1
 Max discrim based on single variables : e ———
_ g gﬂj L
 K-means clustering 2., ;f i
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° LogIStIC regression ;E’E f{d J ——RNA AUC0.86
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 ROC graphs are used to select best method.

« Analysis can be completed by using membership functions to describe the
uncertainty related to the labelling of the alteration type



Application 2: modeling of alterations as a proxy for

flotation behavior

3. Spatial model of geometallurgical units

* Once individual samples have been
labelled, they are used to construct a
spatial model of geometallurgical units

* Done by conventional 3D modeling
techniques or by means of
geostatistical methods 20 K1 Potasic Biolic

Potasic Feldespatic
40 SCC1  Chl-Ser-Clay
41 8CC2 Chl-Ser-Qz
51 81 Ser-Qz
52 82 Ser-Qz-Clay
61 AA Argillic Supergene

Comments:

* Analyzing some sections, we can identify areas where mapping was difficult. These
drill cores could be re-logged to check the alteration logged, hence improving the
result

o Alternatively, if matching is high, alteration type could be “predicted” from
geochemistry only



Application 2: modeling of alterations as a proxy for

flotation behavior

4. Spatial model of index variables

* Index variables (variables deemed more relevant to predict the response) are
modeled in space
o (Geostatistical cosimulation = captures the cross relationship and quantifies
uncertainty

« Scaling is required to go from the lab assay support to the support that relates to the
processing rate

5. Predict metallurgical behavior in space

* Relate index variables with geometallurgical response of interest using conventional
multivariate statistics
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

» Blast hole sampling errors may have a significant economic impact in short term
planning.
 In this application, the impact of changing the sampling methodology (from
conventional BH sampling to advanced RC drilling with automatic sampling) is
assessed in an open pit mine.
o Several aspects are studied and their economic impact quantified:
* Information quality: effect of sampling error (precision), systematic bias,
geological interpretation
* Information quantity: effect of advanced RC drilling spacing as compared to BH
sampling at the blasting spacing.
« Estimation method: effect of implementing kriging Instead of IDW, and

estimation parameters
\
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Application 3: accounting for sampling errors and grade
uncertainty to optimize short term planning
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

One exhaustive dense simulation
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Application 3: accounting for sampling errors and gra
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

SAT6E Samples at a 20 x 20 m grid (with error)
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

ID2 estimation samples without error
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

Kriging estimation samples without error
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning
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Application 3: accounting for sampling errors and grade

uncertainty to optimize short term planning

« Building blocks:
1. Analyze sampling errors
2. Build 10 simulations of TCu, 3@

400

SCu and solubility at block 200 |

support

3. Simulate sampling grids and
errors in realizations to
emulate short term planning
iInformation

250

Profit Losses (million US$)

4. Estimate block grades using -
samples and compare with o |

short term plan considering
exhaustive knowledge (from
the dense simulations)

5. Perform economic evaluation

Profit losses considering drilling costs and geological misclassification

Current situation:
BH with error + ID2 1/6

200 -

150 -

0 i

\U
& — -

Proposed situation:
RC with low error + KR 4/16

6x6 8x8 10x10  12x12 14x14 16x16 18x18 20x20

Advanced Drilling Grid Spacing
(m)

o Estimate recovery (depends on geological unit, clay types)
« Estimate acid consumption (depends on recovery and SCu)
» Assign blocks to plant or waste dump
* Result: Reduced losses amount to 130 million USD over 5 years

—4—|D2 1/6 no added error
—B-KR 4/16 no added error
~#—1D2 1/6 with conditional error

= KR 4/16 with conditional error
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Application 4: prediction of the effect of water-rock

interaction in mineral processing

« Hydrothermal mineral associations, when in contact with water, tend to equilibrium,
generating physicochemical buffering conditions, in particular pH, Eh, and chemical
composition.

* This behavior is not restricted to the mineral deposit; it also occurs when the
minerals are being processed; e.g. grinding

 Model using a geometallurgical approach

ve

modelmg process models

Comminution

Geochemical Mineral Water-rock and flotation

modeling composition interaction

performance
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Challenges

Data acquisition, and quality assurance and control in geometallurgical data

* Need for systematic acquisition of relevant data related to elements, minerals,
and mineral association, grain size, geotechnical parameters, etc.

* Must be integrated in the current workflows to capture the information value.

* Richer data (hyperspectral, quantitative mineralogy, quantitative textural models)
may prove extremely important to understand rock behavior,

* Need for QA-QC protocols in data acquisition and testing.

Insufficient number of data

* Need for proxy assays and measures, to lower the cost of geometallurgical data.

Insufficient tools to discover relationships by statistical means.

« Efforts should move towards phenomenological models, with integration of
geology into the comprehension of mineral processing and metallurgical
processes.

Poor metallurgical models.

* Incomplete understanding of physical and chemical processes that occur within
each one of the mineral processing and metallurgical stages.

o Experimental studies as well as theoretical ones, are required to improve the
knowledge in this area, and scaling is required.



Framework

Pre- Clean
process data

S1: Geological

logging
validation

Original

Expl. Data Processed
Analysis data

Block Processed
model - data
domains

Domaining

data

S7: Domain 3D
creation

S4: Data
imputation

S2: Qutlier

detection S5: Clustering

S8: Economic
envelope

: (ultimate Pit)
S$3: Basic

check: stats,
duplic., rules

S6: Predictive
model
S9: Scheduling

S10:
Destination

.JOII’]'[ pI’OjeCt Assignment

amlc

Block model:

Economic Mine

oo Reliability Planning
Schedule analysis

Block
model| -
geomet

Assignment




Outlook

Hyperspectral
cube

Hyperspectral
Sensor

Drill core




Outlook

-;T

._

Data analytic Decision making

Sensors Data base
tools procedures

Reports

Accelerometer

Wireless Tire
Pressure Sensor
















Conclusions

 Geometallurgy requires integrating geological knowledge into modeling of mining,
mineral processing and metallurgical processes

* Linked workflows are helpful to understand what variables and data are relevant to
Improve the predictive model, and reduces the problem to a manageable parcel

« Modeling the full process is useful even when different levels of sophistication are
used in each step (e.g. complex stochastic spatial model of attributes combined
with simple predictive model)

« Extensions to rock breakage, environmental modeling of acid drainage, water and
energy consumption, etc.

This is mostly an integration step, therefore most of the tools already exist, but
the expertise to put them together and interpret the results with a combined
geological, mining and metallurgical understanding remains as the most difficult
challenge to overcome
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