Stochastic Long-Term Production Scheduling of the LabMag Iron Ore Deposit

May 28, 2013
New Millennium Iron Corp.
Michael Spleit
Senior Engineer, Mine Planning
Introduction

1. Mine profitability: long term production schedule

2. Inherent risk in any schedule: tonnages and grades not fully known

3. Conventional scheduling based on single orebody estimates
 • No risk management
 • Unable to manage multiple goals at once
 • Sub-optimal

This study:
1. Method for simulating the deposit stochastically
2. Evaluate risk in previous schedule
3. Derived a schedule that optimizes profitability
 • Simultaneously managing geological and thus financial risk
LabMag: Location and Drilling

<table>
<thead>
<tr>
<th>Resource by category</th>
<th>Million Tonnes</th>
<th>DTWR %</th>
<th>Head</th>
<th>Concentrate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(18% DTWR cut-off)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured + Indicated</td>
<td>4,309</td>
<td>25.90</td>
<td>29.65</td>
<td>69.97</td>
</tr>
<tr>
<td>Inferred</td>
<td>891</td>
<td>24.79</td>
<td>29.35</td>
<td>69.87</td>
</tr>
</tbody>
</table>

- Labrador Trough
- Labrador City
- Menihek
- NML Project Areas: Northern Québec & Labrador

- Millenium Iron Range
- Labrador Trough
- Schecterville
- Menihek
- Sept-Iles
- Port-Cartier
- Labrador
- Northern Québec
- Labrador
LabMag: A Sedimentary Deposit

Millennium Iron Range Taconite: Typical Cross-Section

- Magnetic taconite ore similar to that of Minnesota’s Mesabi Iron Range
- Sedimentary ore body averaging 60 meters thick with 7 distinct stratigraphic layers
- Shallow, near surface, slightly dipping ore body with very low stripping ratio
- Minor overburden and internal waste
- Open pit mineable
LabMag: Sample Site Layout
Davis Tube Test

• A method for measuring the quantity of magnetic iron recoverable from an ore
• Traditional chemical analysis shows total iron content, whether magnetic or non-magnetic
• Typical processing techniques for magnetite (Taconite) use magnetic separation
• Davis Tube Test gives an approximation of the expected recovery by weight
• Clean concentrate of magnetic material can then be analyzed for iron grade as well as the primary impurity, silica

• FeH is the iron grade of the material fed into the Davis Tube process
• DTWR is the Davis Tube Weight Recovery
• FeC is the iron grade in the Davis Tube Concentrate
• SiC is the silica grade in the Davis Tube Concentrate
Two-Stage Stochastic Simulation

1. Simulate 7 lithological layers
 - Conventional modeling has perfectly flat surfaces that are not realistic and do not account for the uncertainty in the horizons
 - Relationship between thicknesses of each layer to be preserved

2. Simulate 4 properties
 - Each lithology is a separate domain
 - Correlation between qualities must be preserved

Needed: a technique to maintain variable correlations
Min/Max Autocorrelation Factors (MAF)

We can use SGS to simulate 1 variable, say DTWR
We can then use SGS to simulate FeH
...then FeC...then SiC.

But this would not preserve the existing
correlation between the variables.

Ie. FeH, DTWR, FeC, SiC are correlated variables
In particular, there is a strong correlation
between FeH - DTWR and between FeC - SiC

MAF takes multiple correlated variables and
transforms them into uncorrelated “factors”
Min/Max Autocorrelation Factors (MAF)

MAF transforms these 4 variables into 4 factors (MAF1, MAF2, MAF3, MAF4) that have no correlation.

Each factor is a linear combination of the original variables.

The process is based on a two-stage Principal Component Analysis (PCA).

PCA projects the data in such a way as to capture big (principal) variability in the data and ignore small variability.

MAF factors can be simulated independently with SGS, and then back-transformed to the original variables to preserve all correlations.
Simulation Method

1. Use MAF to decorrelate variables of interest to uncorrelated factors
2. Use method like SGS to simulate the uncorrelated factors
3. Back transform the factors to original data space
4. Verify simulations:
 • Check if consistent with the data at the data locations
 • Check statistics such as histograms, variograms are reproduced
 • Check correlations between variables are preserved
 • Visual inspection
Lithology Simulation

Example: 10 simulations for GC layer

All simulations consistent at drill hole locations

Surfaces fluctuate between drill holes according to data statistics
Grade Simulations

General trends are reproduced across simulations
Local variations exist between drill holes
Simulation Validation

Histograms

Variogram

Cross-Variogram
Full-field simulation

Deterministic (kriged) model

Simulated model
Mining Schedule: Quantify Uncertainty
Results

Y1 & Y2 possible short-falls

Y5 likely short-fall
Results

P05: Grade-Tonnage Curve

- Ore Tonnage (T)
- Average DTWR of Ore (%)
- DTWR Cut-Off (%)
First 10 Years: Most Uncertain
Financial Risk in the Manually Derived Schedule

Expected Value is calculated by evaluating each simulation in the schedule, one at a time, and then averaging the resulting NPVs. Note that this differs from evaluating the one average model in the schedule.
Better mine plan: account for uncertainty

Combinatorial problem:
 • Consider all technically feasible mining sequences
 • Choose one with highest expected NPV across all simulations

Uncertainty can not be removed, but it can be managed

Earlier years can mine for tonnages/grades with greater certainty

Uncertainty can be pushed to later years when more information will be available due to mining
Stochastic Integer Programming (SIP)

- SIP is a type of mathematical programming and modelling
- SIP generates an optimal result for some function (while considering multiple equally probable scenarios)
- The optimal result is bounded by constraints
- Examples:
 - Slope constraints
 - Quantity of material the plant can handle
 - Desired product grades
Objective Function

Maximize some function, defined here as:

The Net Present Value (NPV) of the schedule
i.e. Revenue – Operating Costs, discounted by period

The variables are binary, one for each combination of:
Block
Period
Destination

The optimization determines the value for each variable, and thus when and where to send each block.

Note that this means variable cut-offs!
Penalties

1. Deviations from production targets
 • Concentrate tonnes
 • Primary impurity (silica) levels

2. Higher operating costs due to truck haulage

3. Deviations from “smooth” mining
Constraints

1. Slope and sequencing constraints
2. Processing capacity constraints
3. Grade constraints
4. Equipment smoothing constraints
5. Equipment access and mobility constraints
In-Pit Tailings Disposal

Direction of mining

Back-filled tailings

Looking Northwest

Upper Iron Formation

Middle Iron Formation

Lower Iron Formation

Meniehek Slate

Pit limit

Basement Gneiss

Quartzite
10 Year Optimization and Pit Designs

10 Year Optimization Based on Block Model
Each colour is a different period

Manual Pit Designs Based on Optimization

After 5 Years
140 Mm³

After 10 Years
291 Mm³

After 25 Years
742 Mm³
Product Tonnes

Deterministic Schedule

- Product (Million tonnes)
- Period

Stochastic Schedule

- Product (Million tonnes)
- Period
Silica in Concentrate (SiC)

Deterministic Schedule

- P90
- P10
- Mean
- Deterministic
- Target
- Upper limit
- Lower limit

Stochastic Schedule
Major Equipment Fleet

- **Equipment (#)**
- **Period**

- Manual Schedule (Trucks)
- Optimized Schedule (Trucks)
- Manual Schedule (Shovels)
- Optimized Schedule (Shovels)
Optimized Schedule relative to Manual Schedule:
Expected NPV = +16.9%
P90 NPV = +18.1%
P10 NPV = +15.6%
Questions?

TSX : NML
OTCQX : NWLNF
www.NMLiron.com