

Canada Research Chair (Tier I) in Sustainable Mineral Resource Development and Optimization under Uncertainty

COSMO – Stochastic Mine Planning Laboratory Dept. of Mining and Materials Engineering

LUNCHTIME SEMINAR

"Automated modeling: Gleaning information from mine data"

Rajive Ganguli, Phd, PE University of Alaska Fairbanks

Automated modeling: Gleaning information from mine data

Rajive Ganguli, Phd, PE

5 1 1 1 1 1 1	A CONTRACTOR OF			0.580.5		1.5.1	38. AN 18. 3	9 31 X		100 A		
			3 2 81	11845		6 L4I	Fx >	257		10		
1.00				66231							180	
		100 C		and the second second				1.12				
	* *	- 12 I	174	40141		0 915						
1.1			1116	4.1044		4 4 8 5 4	7		1			
4 E 14 04			X 04	44864				208				
12			6 244	A STATE		5 8 8		100				
	19 C 19 C			744444	8-1-1 C							
自省			I BZA	COP LO				and standard in				
			6 78X	11831 F	1.6	> 8 6						
			8 1192	40+1+ HE8// 474/4								
	111 111		8 4.44	11111	1911							
			and an and the	P44-149-1	States of	and the second		and the second second				
	1 A A A A A A A A A A A A A A A A A A A											
			1 6671	and the second second	6.3.3							
187	6.9.9		> 46+0 +:		1000							
6 4 68	2.4.8		110025									
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
and the second	1124	State State										
41.03	1 4 7 6	CP 84 4	2 生 北平 1 者									
015	1 4 4 8	->E#	769450									
46 8 4	EBOT		501598									
	1442		TANADE		1.1.1							
and the second	and the second second	668	and the second second	and the second second								
	9248	470	and the second se									
1111	27.04	278	*****									
6 1 4		Xe										
10.00	6144		8448840									
		\$X 40	and the second									
	88173	and the second second										

"In New Military, Data Overload Can Be Deadly" New York Times, Jan 17, 2011

I thought there was no such thing as too much data ...

Data in itself is not "information"
 – Requires digesting

Data overload not the only issue in the

mining industry

- Too many inter-related varieties:
 - Engineering: Different equipment, processes
 - Non-engineering: costs, labor, time
- Sensor data quality issues
 - Difficult physics governs sensor principles or operating conditions
- Engineering relationships not understood → tough to use data
 - "How is rock size related to the mill power consumption?"
- Sufficient advanced data analysis skills not available at mine sites

Auto-Analysis

Analysis is logical and math driven → easily programmed

Can happen in the background

Minimal human interaction

Current Problem

 Model power consumption at Fort Knox SAG Mill

• Factors 'impacting' power consumption: 15

Data Source: The Process Information System
 – 1 minute intervals

Past Work: Manual Modeling*

- Artificial Intelligence (neural networks)
 Used Commercial Software: Neuroshell2
- Pre-processing: Clean up data
 20,120 minutes of clean data
- Modeling process:
 - Develop model on 80% of data
 - Predict the unused 20%
 - Eliminate inputs systematically to test input relevance

*Ganguli, R., Dutta, S. and Bandopadhyay, S., 2006, "Determining Relevant Inputs for SAG Mill Power Draw Modeling," in Advances in Comminution, Ed. Kawatra, SME Publication. University of Alaska Fairbanks

Past Work: Results

- 6 inputs found useful
 - rpm, recycle, feed rate, density, bearing pressure, noise

Coefficient of Determination (COD): 0.87

Auto-Modeling Scope

- Limited in scope (graduate student project)...
 - Pre-processing not included
 - Only one type of neural network programmed
 - MS Excel tool
- ... but still achieves the "meat" of the process
 - Eliminating "related" inputs
 - NN modeling
 - Identification of "essential" inputs

Auto-NN Modeling Details

- Core NN features "free"
 - #neurons, activation function
- NN performance evaluation metric
 - COD, RMSE, AIC (Akaike Info Criteria)
 - Tough balancing act: maximizing one metric can minimize another
- Identifying "useful" inputs: Combinatorial approach

Auto-Modeling: Results

- When forced to use the same six inputs
 COD = 0.84
- When "free", eliminated noise and density
 COD = 0.82
- Direct comparison between past work and current work not entirely legitimate
 - Auto-modeling dataset smaller
 - Type of neural network different

Auto-modeling: Final Thoughts

Shows promise

Pre-processing is very essential

- Real world datasets (large!) will intensify computational need
 - Models on carefully selected subsets may work
 - Strategic human touch essential

Questions?

Acknowledgments

Siddhartha Agarwal, MS (Mining Engineering, 2010), did some of the work reported here.

Thanks to Fort Knox for allowing use of their data