

COSMO – Stochastic Mine Planning Laboratory Department of Mining and Materials Engineering

Stochastic Mine Planning Concepts, Applications and Contributions:

From past developments to production scheduling with 'future data'

Roussos Dimitrakopoulos

Overview

- The economic side of uncertainty
- Models of geological uncertainly
- Limits of traditional mine design optimization
- Shifting the paradigm: Stochastic mine planning
- Using uncertainty to improve project performance
- Uncertainty is great!

Risk in Mining: A World Bank Survey

 60% of mines had an average rate of production LESS THAN 70% of planned rate

In the first year after start up, 70% of mills or concentrators had an average rate of production LESS THAN 70% of design capacity

Key contributor to mining risk felt in all downstream phases:

Geology and reserves

Mining Project Valuation

Quantitative Models of Geological Uncertainty:

Stochastic or geostatistical conditional simulations

Describing the Uncertainty about a Gold Deposit

Model characteristics:

o Large number of blocks

o Multiple domains

o Resource classes with specific sample selection criteria

A gold load

Loc Describing the Uncertainty about a Gold Deposit

Many managers believe that uncertainty is a problem and should be avoided.....

... you can take advantage of uncertainty. Your strategic investments will be sheltered from its adverse effects while remaining exposed to its upside potential. Uncertainty will create opportunities and value.

Once your way of thinking explicitly includes uncertainty, the whole decision-making framework changes.

Martha Amram and Nalin Kulatilaka in "Real Options"

Moving Forward in Optimization

Limits of traditional mine design

Using models of uncertainty

Open Pit Mine Design and Production Scheduling

Risk Analysis in a Mine Design

Limits of Traditional Modelling

Moving Forward Step 1

Exploring existing technologies

Past Work – Open Pit Mine Design

Pit Design	Upside I	Upside Potential (m\$)			Downside Potential (m\$)		
	CB-1	CB-2	CB-3	CB-1	CB-2	CB-3	
	2.3	2.41	1.8	0.0	-0.079	-0.20	
	1.3	2.1	1.6	-0.78	-0.15	-0.51	
	2.4	2.43	1.9	0.0	-0.022	-0.28	
	2.9	2.40	1.2	0.0	-0.16	-0.96	

Moving Forward Step 2

Re-writing optimizers

Models of Uncertainty in Optimization

Integer Programming C₂ C_1 С₃ An objective function Maximise $(c_1 x_1^1 + c_2 x_2^1 + ...)$... c = constant X_1^1 = binary variable Subject to ----> Period 1 $C_1X_1^1 + C_2X_2^1 + \ldots \ge b_1$ $C_1 X_1^{p} + C_2 X_2^{p} + ... \ge b_{p}$ -----> Period p

Stochastic Integer Programming

The objective function now Maximise $(s_{11}x_1^1 + s_{21}x_2^1 + + s_{12}x_1^1 + s_{22}x_2^1 +)$ Subject to

$$s_{11}x_1^{-1} + s_{21}x_2^{-1} + \dots \ge b_1$$

$$s_{11}x_1^p + s_{21}x_2^p + \dots \ge b_1$$

 $s_{12}x_1^p + s_{22}x_2^p + \dots \ge b_1$

Period 1 Simulated model 7 Simulated model 2 Simulated model r

 $s_{1r}x_1^p + s_{2r}x_2^p + \dots \ge b_1$ — Period p

Higher NPV for Less Risk

"Uncertainty will

create opportunities and value"

Uncertainty is Good: "Base case" vs "Risk-based"

Discounting Geological Risk

The discounting goes along with production sequencing

SIP - Production Scheduling Model

Stochastic Integer Programming - SIP

Managing Risk Between Periods

Deviations from metal production target

RDF – risk discounting factor

r - orebody risk discount rate

Uncertainty is Good: Traditional vs Risk-Based

Future Drilling Data

Production sequencing with simulated grade control drilling

'Future' Grade Control Data

Bench/Section of pit already mined out

Step 3

Schedules:

- SIP schedule derived from simulations based on exploration data
- SIP schedule derived from simulations based on simulated grade control information (updated models)
- Risk analysis of mine's schedule with the updated models

Average of the simulations

Period (years)

Simulations

Mine's Schedule

SIP & Simulated Orebody SIP & Future data

Period (years)

	Simulations (exploration data)	Updated simulations (future data)	Mine's schedule (future data)	
Ore Tonnes (Mt)	14	18	10	
Metal Tonnes (Mt)	52	55	38	
NPV (\$ Mil.)	552	560	330	

Uncertainty is Great

And we will eventually find out