

Harnessing Uncertainty for

Orebody Modelling and Strategic Mine Planning

Roussos Dimitrakopoulos

Canada Research Chair in Sustainable Mineral Resource Development and Optimization under Uncertainty

Department of Mining, Metals and Materials Engineering

Keynote speech to AMEC Internal conference, Vancouver, November 2005

Overview

- The economic side of uncertainty
- Models of geological uncertainly
- Limits of traditional mine design optimization
- Shifting the paradigm: Stochastic mine planning
- Using uncertainty to improve project performance
- Conclusions Uncertainty is great!

Uncertainty Matters: The Economic Side of Uncertainty

Changing the way we do things

Uncertainty Matters: Return on Investment is Uncertain, therefore Risky

Possibility of not making a return on capital (NPV<0)

• Alternative development plans may have different risk profiles and expected values. Example:

Risk in Mining: A World Bank Survey

 60% of mines had an average rate of production LESS THAN 70% of planned rate

 In the first year after start up, 70% of mills or concentrators had an average rate of production LESS THAN 70% of design capacity

Key contributor to mining risk felt in all downstream phases:

Geology and reserves

Uncertainty is not a "Bad Thing"

Many managers believe that uncertainty is a problem and should be avoided.....

... you can take advantage of uncertainty. Your strategic investments will be sheltered from its adverse effects while remaining exposed to its upside potential. Uncertainty will create opportunities and value.

Once your way of thinking explicitly includes uncertainty, the whole decision-making framework changes.

> Martha Amram and Nalin Kulatilaka in "Real Options"

Real Options vs DCF View of Value

Accurate Uncertainty Assessment Needed

"The goal of technical evaluation should be to strive for an accurate assessment of uncertainty, not a single precise answer"

Mining Project Valuation

Quantitative Models of Geological Uncertainty:

Stochastic or geostatistical conditional simulations

Describing the Uncertainty about a Mineral Deposit

Actual but unknown mineral deposit

Information about the deposit

Probable models of the deposit

Describing the Uncertainty about a Gold Deposit

Model characteristics:

- o Large number of blocks
- o Multiple domains
- o Resource classes with specific sample selection criteria

A gold load

Lode 1502 Simulation #1

Lode 1502 Simulation #2

Lode 1502 Simulation #3

Moving Forward in Optimization: Limits of Traditional Mine Design

Using Models of Uncertainty

Risk Analysis in a Mine Design

Objective

Quantify the impact of grade uncertainty to tonnage, grades, metal and net present value - net present vnalue vs risk exposure

Methodology

Open Pit Mine Design and Production Scheduling

Limits of Traditional Modelling

The expected project NPV has only 2 - 4% probability to be realised

Limits of Traditional Modelling

Discounted Cash Flow

Cash Flow (m\$ p.a.)

Production Period (1/4 Year)

Probabilities on Pit Limits

0.7	1.0	1.0	1.0	1.0	1.0	1.0	1 (0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.3	0.1	- þ. i
/e.o	1.0	1.0	1.0	1.0	ι.ο	1.0	1.0	1.0	ι.α	1.0	1.0	1.0	ι.α	1.0	0.9	0.8	0.1	/o.1
0.5	1.0	1.0	1.0	1.0	1.0	1.0	1 (0 1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	0.2	6.1	0.1
0.8 \	O.8	1.0	1.0	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.4	0.1	0.1	ο.ι
0.2	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.3	0.1	0.1	0.0
0.0	0.5	1.0	1.0	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	1.0	1.0	0.7	0.3	0.1	0.1	0.0
0.0	\ 0.+	1.0	1.0	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	1.0	Q.9	0.5	0.2	0.1	0.y	0 .0
	\ 0.3	1.0	1.0	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	1.0	0.9	0.4	0.1	0.1	o li	0.0
	0.8	0.8	1.0	1.0	ι.α	1.0	1.0	1.0	ι.α	1.0	1.0	1.0	0.7	0.2	0.1	0.1	0.1	0.0
	p. 1	0.5	1.0	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	1.0	0.5	0.2	0.1	0.1	0.0	0.0
	<u>q.o</u>	0.4	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	0.5	0.2	0.1	0.1	0.0	0.0
	୍ଦ୍	0.2	1.0	1.0	1.0	1.0	1 (0 1.0	1.0	1.0	1.0							
		0.2	0.9	1.0	1.0	1.0	1.0	0 1.0	1.0	1.0	1.0	10	0% n	rohahi	ility c	of falli	inσ	þ. O
		Q Z	0.7	0.7	1.0	1.0	1.0	0 1.0	1.0	1.0	0.9					/1 1am	ing	p .o
		0	0.4	0.4	1.0	1.0	1.0	0 1.0	1.0	1.0	9.7	wi	thin t	he pit	for a	given	L	p. o
		0.0	0.2	0.2	0.9	1.0	1.0	0 1.0	1.0	1.0	0.5		- <u> </u>			\mathcal{O}		b .0
		0,0	0.1	0.1	0.8	1.0	1.0	0 1.0	1.0	0.9	0.4		etai pi	nce				D.O
			0.1	0.1	0.4	1.0	10	5 1.0	1.0	0.7	0.2	L						0 .0
			0.1	<u>_ 0.1</u>	0.3	0.9	10	1.0	0.9	0.4	0.2	02/	0.1	0.1	0.0	0.0	0	0.0
	D' 1	•		0.1	0.2	0.7	1.0	0 1.0	0.7	0.3	0.1	0	0.1	0.1	0.0	0.0	0.0	
	Pit li	mit			0.0	0.3	0.9	9 1.0	Q.4	0.2	0.1	01	Q. 1	Φ.Ι	0.0	0.0	0.0	
datarminad			0.0	0.1	0	7 1.0	0.3	0.1	0.1	0 1	0.1	0.1	0.0	0.0	0.0			
determined				0.0	0.5	5 0.8	0.2	0.1	0.1	0.1	0.1	ο.ι	0.0	0.0	0.0			
conventionally					0.0	0 2	2 0.7	0,2	0.1	0.1	0.1	0.1	0.0	0.0	0.0			
conventionally					0	0.4	0.2	0.1	0.0	0 1	0.1	0.0	0.0	0.0				
					- 40	0.2	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0				
								0.0	0.0	0.1	0.0	0 1	0.0	0.0	0.0	0.0		
											0.0	00	0.0	0.0	0.0	0.0		
		1			1					1	0.0	010	0.0	0.0	0.0		1	

This is Not ...

Moving Forward Step 1

Exploring existing technologies

Upside or Downside = $\sum ([Value - MAR]^* probability)$

Past Work – Open Pit Mine Design Upside Potential / Downside Risk

Pit Design	Upside F	Potential (m\$)	Downside Potential (m\$)			
	CB-1	CB-2	CB-3	CB-1	CB-2	CB-3	
2	2.3	2.41	1.8	0.0	-0.079	-0.20	
	1.3	2.1	1.6	-0.78	-0.15	-0.51	
6	2.4	2.43	1.9	0.0	-0.022	-0.28	
12	2.9	2.40	1.2	0.0	-0.16	-0.96	

Moving Forward Step 2

Re-writing optimizers

Models of Uncertainty in Optimization

Integer Programming

An objective function

Maximise
$$(c_1x_1^{1}+c_2x_2^{1}+...)$$
...

c = constant X_1^1 = binary variable

Subject to

Stochastic Integer Programming

The objective function now

Maximise $(s_{11}x_1^1 + s_{21}x_2^1 + \dots + s_{12}x_1^1 + s_{22}x_2^1 + \dots)$... Subject to

 $S_{11}X_{1}^{1} + S_{21}X_{2}^{1} + \dots \ge b_{1}$ $S_{11}X_{1}^{p} + S_{21}X_{2}^{p} + \dots \ge b_{1}$ $S_{12}X_{1}^{p} + S_{22}X_{2}^{p} + \dots \ge b_{1}$

Period 1
 Simulated model 1
 Simulated model 2
 Simulated model r

"Uncertainty Will Create Opportunities and Value"

Higher NPV for less risk

Base Case: Geological Risk Assessment of Ore Production

Uncertainty in Ore Production - Base Case Schedule

Risk-based: Assessment in Ore Production

Uncertainty is Good: Discounting Geological Risk

The discounting goes along with production sequencing

SIP - Production Scheduling Model

Objective function Max $\sum_{i=1}^{P} \sum_{i=1}^{N} E\{(NPV)_{i}^{t}\} b_{i}^{t}$ \longrightarrow Part 1 Mill & dump $-\sum_{i}^{t} E\{(NPV)_{i}^{t} + MC_{i}^{t}\} * S_{i}^{t} \longrightarrow Part 2$ Stockpile input + $\sum_{s}^{M} (SV)_{s}^{t} (P) q_{s}^{t}$ Part 3 Stockpile output s=1 $-\sum_{u}^{M} (c_{u}^{ty} d_{su}^{ty} + c_{1}^{ty} d_{s1}^{ty})]$ Part 4 **Risk management**

Cross-Sectional Views of the Schedules

Managing Risk Between Periods

Deviations from metal production target

RDF – risk discounting factor

r – orebody risk discount rate

Case Study on a Large Gold Mine

The SIP specific information

Orebody risk discounting rate	20 %
Cost of shortage in ore production	10,000 /t
Cost of excess ore production	1,000 /t
Cost of shortage in metal production	20 /gr
Cost of excess metal production	20 /gr
Number of simulated orebody models	15

Deviations from Production Targets

Metal Production

Stockpile's Profile

Uncertainty is Good: Traditional vs Risk-Based

Stochastic Integer Programming

Cumulative NPV values
SIP model WFX

Average NPV values

SIP model WFX

Geological Risk Discounting= 20%

Some conclusions

- ".... uncertainty is (not) a problem and should be avoided ?"
- "... you can take advantage of uncertainty...."
- "....uncertainty will create opportunities and value."
- "...once your way of thinking explicitly includes uncertainty, the whole decision-making framework changes."
- We need:

Stochastic mine planning and NEW mathematical models

• It is all about good people:

Education and training in a long term sense

Please join us!