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Successive Nonparametric Estimation of
Conditional Distributions 1

J. Antonio Vargas-Guzmán2 and Roussos Dimitrakopoulos2

Spatial characterization of non-Gaussian attributes in earth sciences and engineering commonly re-
quires the estimation of their conditional distribution. The indicator and probability kriging approaches
of current nonparametric geostatistics provide approximations for estimating conditional distributions.
They do not, however, provide results similar to those in the cumbersome implementation of simul-
taneous cokriging of indicators. This paper presents a new formulation termed successive cokriging
of indicators that avoids the classic simultaneous solution and related computational problems, while
obtaining equivalent results to the impractical simultaneous solution of cokriging of indicators. A
successive minimization of the estimation variance of probability estimates is performed, as addi-
tional data are successively included into the estimation process. In addition, the approach leads to an
efficient nonparametric simulation algorithm for non-Gaussian random functions based on residual
probabilities.

KEY WORDS: Non-Gaussian random functions, nonparametric estimation, conditional covariance,
cokriging of indicators, indicator simulation.

INTRODUCTION

In geosciences, the modeling of uncertainty and risk in the spatial distribution
of non-Gaussian attributes frequently requires the estimation of local conditional
distribution functions. Journel (1983) introduced indicator random functions and
indicator kriging (IK) for the nonparametric estimation of local conditional dis-
tributions of ergodic, non-Gaussian stationary random functions. IK has been
widely used in many areas of study including forecasting of recoverable ore
reserves (Fytas, Chaouai, and Lavigne, 1990; Lemmer, 1984), risk assessment
in polluted soils (Goovaerts, Webster, and Dubois, 1997), modeling of geology
(Dimitrakopoulos and Dagbert, 1993; Soares, 1992), mapping (Solow, 1986),
characterization of petroleum reservoirs (Data-Gupta, Xue, and Lee, 1999; Hohn
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and McDowell, 1994), characterization and risk assessment in contaminated sites
(Christakos and Hristopoulos, 1998), and analysis of earthquake motions (Carr and
Glass, 1985). A related major area of interest and application of nonparametric
estimation of conditional distributions is the stochastic simulation of non-Gaussian
random functions using, for example, sequential indicator simulation (Journel and
Alabert, 1990) or probability field simulation (Srivastava, 1992).

The indicator transform of a stationary and ergodic random functionZ(x) in
Rn is

I (x) =
{

1 if Z(x) ≤ zc

0 if not

}
(1)

wherezc is a cutoff andx a spatial location in an-dimensional physical space. In
practice, a number ofq cutoffs are used; then, the scalar random functionZ(x) is
transformed into an indicator vector random function as

I (x) = bI1(x), . . . It (x), Iu(x), . . . Iq(x)c (2)

The cross-covariances between the indicator random functions are

cIt Iu(h) = E{It (x + h)Iu(x)} − E [ It ] E [ Iu] (3)

wherex andx + h are spatial locations,t andu correspond to two categories or
cutoffs, andE[ It ] andE[ Iu] are the means independent of location. The expected
values in Eq. (3) are related to the joint cumulative distribution functionF(Zt (x +
h), Zu(x)) and the marginal distributionsF(Zt ) andF(Zu) as

cIt Iu(h) = F(Zt (x + h), Zu(x))− F(Zt )F(Zu) (4)

IK provides a point estimatêF [Zt (x)] of a conditional cumulative distribution
function (ccdf) at locationx using a single category or cutoff. Ift = u, in Eq. (4),
the covariance for IK is obtained. The IK system does not guarantee that probability
estimates satisfy 0≤ F̂ [Z(x)] ≤ 1 or may not follow the order relations of a ccdf.
That is, for any two cutoffsz1 < z2 the estimated probabilities at a location should
satisfy F̂(z1) < F̂(z2) (Journel and Posa, 1990).

Sullivan (1984) introduced probability kriging (PK) whereZ(x) is replaced
by a global ccdf such thatU (x) = F(Z(x)). Then,U (x) is cokriged together with
the indicator I(x) of a single cutoff to estimate probabilities. Sullivan’s major jus-
tification for PK is that the cokriging estimation generates more accurate ccdf’s,
because of the lower estimation variances when compared to kriging each indi-
vidual I(x) on its own. Furthermore, Sullivan (1984) suggests that PK is a next
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best alternative to the computationally intensive cokriging ofI (x). Although PK
was formulated as a practical improvement to IK, the meaning of the estimates
becomes complex as the joint distribution betweenU (x) andI (x) becomes harder
to interpret and order relation violations are not eliminated.

It is logical to consider that the inclusion of more information and all cutoffs
simultaneously in the estimation of a ccdf should provide more consistent esti-
mates. Suro Perez and Journel (1991) report that the cross-covariances between
indicators are not negligible. Chiles and Delfiner (1999) comment that the im-
plementation of cokriging of indicators remains difficult because of the general
unavailability of consistent theoretical covariance models for a set of indicators,
and the substantial numerical difficulties in solving simultaneous large systems
of equations when cokriging indicators. They attribute the above for the prac-
tical inferiority of the theoretically better cokriging of indicators, as shown in
Goovaerts (1994), when compared to IK. Goovaerts (1997) identifies two ma-
jor problems in the cokriging of indicators. First, the practical difficulty in the
inference of cross-variogram models between indicators, an issue where the con-
tribution by Yao and Journel (1998) may be relevant. Second, the inversion of
very large cokriging matrices at each locationx in space, where a ccdf is being
estimated, is well known for generating numerical instabilities. In addition, one
can identify that the inversion of cokriging matrices is linked to scaling problems
that may be in part the cause for the inferior results of cokriging of indicators
reported in Goovaerts (1997). A notable alternative to avoid scaling problems is
the definition of class interval membership indicators in Carle and Fogg (1996),
who analyze them with Markovian transition probabilities and formulate an al-
ternative solution that also resorts to the simultaneous solution of cokriging of
indicators.

In this paper, the impractical inversion of very large cokriging matrices asso-
ciated with the classic “simultaneous” solution of the cokriging system is avoided.
A new formulation of the complete cokriging of indicators is presented on the
basis of a so-called successive approach that allows the use of data in successive
steps. The foundation of the approach is based upon conditional covariances of
residual probabilities, which are introduced in detail. The successive minimiza-
tion of the estimation variance for each indicator leads to the development of
successive cokriging of indicators. As shown in the subsequent sections, the use
of additional information reduces the kriging variance for the estimated proba-
bilities and minimizes the chances of estimated ccdf’s outside certain confidence
interval. This also means that order relation problems typical in IK formulations
are minimized while the succesive use of data allows detection of any data that
cause order relation problems. Last but not least, the new formulation of cok-
riging of indicators leads to a nonparametric stochastic simulation approach that
appears promising for the efficient generation of large-size simulations of spatial
phenomena.
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PROBABILITY AND INDICATORS REVISITED

Indicator Kriging Weights and Probability of Events

Uncertainty analysis in earth sciences phenomena is commonly examined us-
ing probabilities of events occurring. An indicator random functionI (x) is made
of a spatially continuous set of correlated binary random variables (e.g., Cox and
Snell, 1989). Recall that the binomial and therefore the Gaussian distributions are
elementally made by Bernoulli trials. The functionI (x) is stationary and ergodic
and has an indicator covariance functioncI (h). Define a datum at locationxi ,
and a conditional probability to be estimated at locationxk. For a constant cutoff,
the mean probabilityF̄(zc) independent of location is estimated as a quadratic
equation forh = 0 from Eq. (4) (Journel, 1983). A residual of the indicator
R(xi ) is

R(xi ) = I (xi )− F̄(zc) (5)

When using simple indicator kriging and one sample location, the estimated prob-
ability of I (xk) = 1 is

F̂(xk) = λik R(xi )+ F̄(zc) (6)

where one kriging weight from classic indicator kriging is the ratio of an indicator
covariance and the indicator variance. Using the eventsA is I (xi ) = 1 and B
is I (xk) = 1, and Eq. (4), where the cumulative distribution is equivalent to the
probability of events, this is

λik = P(A∩ B)(1− P(A)P(B))

P(A)(1− P(A))
(7)

To elaborate on Eq. (7) with respect to positive weights, consider the case where
both eventsA and B are low correlated, then the productP(A)P(B) is close to
P(A∩ B) and then Eq. (7) yields

λik ≈ P(A∩ B)P(A∩ B)c

P(A)P(Ac)
(8)

where, the superscriptc means the complementary event.

P(A∩ B)c

P(Ac)
= P(Ac ∩ Bc)

P(Ac)
+ P(A∩ Bc)

P(Ac)
+ P(Ac ∩ B)

P(Ac)
(9)
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Because of stationarity, the mean probability of an event isP(A) = P(B) and
P(Ac) = P(Bc), then

P(A∩ B)c

P(Ac)
= P(Bc | Ac)+ P(A | Bc)+ P(B | Ac) (10)

and

λik ≈ P(B | A)[ P(Bc | Ac)+ P(A | Bc)+ P(B | Ac)] (11)

Thus, the kriging weight for this case is related to the product of the conditional
probability that the estimate is in the same category as the datum, and the sum of
conditional probabilities involving complementary events. The case wherexi = xk

leads toλik ≈ 1 because the two last terms in Eq. (11) vanish. If a new datum at
point xm is added to the estimation, conditional covariances will be required as
explained in the next section.

Conditional Indicator Covariances From Probabilities

As an example of conditional indicator covariances, consider a single avail-
able indicator datum at locationxi is used to estimatexk. The first step krig-
ing estimator is a prior estimate in Eq. (6) and a weight is computed as the
ratio λ[1]

ik = c−1
i i cik . A sampled datum becomes available atxk. The true indi-

cator value atxk minus the previous estimate provides a residual probability
R(xk) = I (xk)− F̂(xk). Note that an analogous way to probabilities explained
in Bartlett (1945),R(xi ) may be positive or negative depending on the true values
of I (xk). True indicator values will be sampled at additional locationsxm andxr ,
and they will be known after their estimation. The datum atxi is used to esti-
mate locationsxk, xm, xr , and the rest of the domain. The indicator conditional
covariance between residual random variables for a pair of locationsxk andxm is

ξkm = ckm− ckic
−1
i i cim (12)

where the terms are the covariances between pairs of random variables. Ifk = m,
the zero lag distance conditional varianceξkk is

ξkk = ckk − ckic
−1
i i cik (13)

Substituting Eq. (3) into (13) yields

ξkk = F(Z)(1− F(Z))− [F(Zi , Zk)− F(Zi )F(Zk)]2F(Z)(1− F(Z))−1 (14)
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whereF(Z) is the probabilityP(A) of an event A andF(Zi , Zk) is a probability
of a joint eventP(A∩ B). Then,

ξkk = P(A)P(Ac)− [ P(A∩ B)− P(A)P(B)]2[ P(B)P(Bc)]−1 (15)

From Eq. (5) the kriging weight for the first step is identified and gives

ξkk = P(A)P(Ac)− λ[1]
i j [ P(A∩ B)− P(A)P(B)]c (16)

Using Eq. (14) in a more general way, the conditional covarianceξkmfor k 6= m is

ξkm = [F(Zk, Zm)− F(Zk)F(Zm)] − λ[1]
ik [F(Zi , Zm)− F(Zi )F(Zm)] (17)

callingC to the event of locationI (xm) = 1, Eq. (17) is

ξkm = [ P(B ∩ C)− P (B) P (C)] − λ[1]
ik [ P(C ∩ A)− P (A) P (C)] (18)

Since the mean probability is constant (i.e., second-order stationary probabilities
for a constant cutoff), this yields

ξkm = P(B ∩ C)− λ[1]
ik [ P(C ∩ A)] + [ P(A)]2

(
λ

[1]
ik − 1

)
(19)

Note that this relation allows computation of the conditional covariances from
probability measurements in a framework of second-order moments. We have
explained the successive conditional covariances for residuals in the context of
indicators or Bernoulli process and residual probabilities. The above validates the
use of successive estimation methods for probability estimates.

SUCCESSIVE INDICATOR ESTIMATION

Estimation With Residual Probabilities

The locationxk was estimated with the prior data. Later, the indicatorI (xk)
becomes posterior datum because it is exactly known from sampling, then a residual
probability R1(xk) may be computed as

R1(xk) = I (xk)− (λ[1]
ik R(xi )+ F̄(zc)

)
(20)

where the second term comes from prior estimation as in Eq. (5). This allows
for a second step conditional kriging computed with the indicator conditional
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covariances of Eqs. (14) and (17) as follows:

λ
[2]
km = ξ−1

kk ξkm (21)

This is used to improve the first estimated probability atxm, as

F̂2(xm) = (λ[1]
im R(xi )+ F̄(zc)

)+ λ[2]
kmR1(xk) (22)

whereλ[1]
im is computed in the same way asλ[1]

ik . In a next step,I (xm) becomes
known from sampling and a new updated residual probability is

R2(xm) = I (xm)− F̂2(xm) (23)

The probability has also been estimated at pointxr

F̂2(xr ) =
(
λ

[1]
ir R(xi )+ F̄(zc)

)+ λ[2]
kr R1(xk) (24)

This last estimate can be updated by using the residual probability data atxm as

F̂3(xr ) = F̂2(xr )+ λ[3]
mr

[
I (xm)− [(λ[1]

im R(xi )+ F̄(zc)
)+ λ[2]

kmR1(xk)
] ]

(25)

whereλ[3]
mr is a residual conditional kriging weight from

λ[3]
mr =

[
ξmm− ξmkξ

−1
kk ξkm

]−1[
ξmr − ξmkξ

−1
kk ξkr

]
(26)

The updated indicator conditional covariance in Eq. (26) can be written following
Eq. (17) in terms of probabilities, however, that is not necessary here.

Successive Indicator Kriging

The above analysis may proceed for a number of groups of data locations
but with the purpose of estimating kriging weights. The approach is for estimation
of ccdf’s using indicator random functions. The expected value of an estimated
ccdf gives an estimate for the original attribute. The expected value of the second
moment may allow computation of an estimation variance for the original attribute.
The general idea is that for a single cutoff indicator the estimates are conditional
probabilities that have an estimation variance (i.e., kriging variance), which drops
as more data are used in the estimation. Successive kriging allows the use of more
data in a sequential fashion but with numerical results equal to the simultaneous
solution.
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Successive indicator kriging considers successive subsets of indicator data
that are part of a global indicator data set. These are

I g =

 I p

I s

I r

 (27)

introducingΛ matrices andλ vectors of kriging weights that are to estimate a
group or a point from data of another group. Generalizing Eq. (25) a successive
estimator for the point locationxo is introduced as

F̂(xo) = [λ[1]
p(o)

]T
R(xp)+ F̄(zc)+

[
λ[2]

s(o)

]T⌊
I (xs)−

([
Λ[1]

ps

]T
R(xp)

)+ F̄(zc)
⌋

+ [λ[3]
r (o)

]T[
I (xr )−

[[
Λ[1]

pr

]T
R(xp)+ [Λ[2]

sr

]T(
I (xk)

−([Λ[1]
ps

]T
R(xp)

)+ F̄(zc)
)]]

(28)

whereR(x) are residual probability data matrices. Note this equation represents
successive steps. If more new data become available, additional steps can be added,
as needed. The true conditional probability isF(xo), and the estimation error1Fo is

1Fo = F(xo)− F̂(xo) (29)

The estimation variance of these probability estimates is

E(1Fo)2 = E(F(xo)− F̂(xo))2 (30)

Minimizing Eq. (30) by taking derivatives with respect to the weights yields a
succession of steps of conditional indicator kriging equations, these are

c[1]
ppΛ[1]

pD = c[1]
pD

ξ[2]
ss Λ[2]

sD = ξ[2]
sD

ξ[3]
rr Λ[3]

r D = ξ[3]
r D

(31)

where D is the remaining domain including the data not utilized yet and any
locationxo. In general, further conditional kriging steps are added, for example
ξ[4]

(r+1)(r+1)Λ
[4]
(r+1)D = ξ[4]

(r+1)D. Any conditional residual indicator covariance is a
function of the previous step indicator conditional covariances. For example,
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this is

ξ[4]
(r+1)D = ξ[3]

(r+1)D − ξ[3]
Dr

[
ξ[3]

rr

]−1
ξ

[3]
r (r+1) (32)

The approach described here can be applied to a large number of subsets of in-
dicator data. The use of a successive approach allows the use of as much data as
available for the estimation of the probabilities. Finally, the simultaneous solutions
of indicator kriging with all the data will give the same numerical result as the
successive solution.

Cross-Covariances of Indicators

As explained in the Introduction (Chiles and Delfiner, 1999; Sullivan, 1984;
Suro Perez and Journel, 1991), the lower estimation variance should, at least in
theory, occur when indicator data from all cutoffs are utilized (i.e., cokriging
of indicators). Arguably, cokriging of indicators is impractical if a simultaneous
solution is sought despite its theoretical advantages. A successive solution can
provide a suitable practical alternative.

An important observation is that zero lag distance indicator covariances (vari-
ances) have a scaling effect on the cross-covariances and they are exactly pre-
dictable for given percentiles, recall the variance isP(1− P). It is well known that
the maximum variance is 0.25 and corresponds to the median indicator,P = 0.5
(Journel, 1983). Cross-covariances for indicators involving extreme low and high
cutoffs will be low in absolute value due to scaling and significant cross-correlation
ρtu(h) may be hidden in the cross-covariance. This is

ctu(h) = ρtu(h)
√

ctt (0)
√

cuu(0) (33)

Indicators with different variances might not be standardized because the proba-
bilistic meaning of estimates may be distorted. Thus, simultaneous cokriging of
indicators may encounter scaling difficulties.

The above analysis leads to an analysis of cross-covariances between in-
dicators for zero lag distance. The cross-covariance between indicators for two
cutoffszt < zu is defined in Eq. (4). IfA is the eventIt (x) = 1 andB is the event
Iu(x + h) = 1 for h = 0, this is if A ⊂ B andP(A∩ B) = P(A) following defi-
nition in Eq. (1). This is ifB occursA also occurs but not vice versa. ForA ⊂ B
Eq. (4) gives

cIt Iu(0)∼= F(Zt (x))− F (Zt (x)) F (Zu(x)) (34)

In general forh 6= 0, P(A∩ B) = P(A)P(B | A) is controlled by the correlation
ρtu(h).
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Another alternative for cokriging is to formulate indicators that are disjoint
sets at shorter and zero lag distance. In this approach, a location only belongs to
one class or category. The indicator is defined between intervals (zt − zu) as

I(t−u) (x, (zt − zu)) =
{

1, if zt ≤ z(x) ≤ zu ∀zu > zt

0, if not

}
(35)

This is a membership indicator for a class interval. See also categorical indicators
implicit in the computation of transitional probabilities in geology (e.g., Carle
and Fogg, 1996). The cross-covariances in this case are also computed follow-
ing Eqs. (2) and (3). If constant proportionsP for class intervals are chosen,
the variancesP(1−P) are very similar allowing for a cokriging using all class
intervals. SinceP(A∩ B) = φ is the empty set forh = 0 following Eq. (4) the
cross-covariance becomes

cIt−u Il−m(0)= −F (zt−u) F (zl−m) (36)

If disjoint sets are used, the estimates are probabilities of falling within an in-
terval. These are the areas within an interval below the conditional probability
density function. Adding these areas for each cutoff reproduces the cumulative
probabilities.

Successive Cokriging of Indicators

Having the cross-covariances, the successive cokriging of indicators approach
proceeds as an extension of successive indicator kriging. The conditional indicator
covariance terms are substituted by multivariate matrices of conditional indicator
covariances and cross-covariances. Successive indicator cokriging is implemented
when using conditional indicator cross-covariances defined below. The constant
mean probabilities are handled like in successive indicator kriging. Using matrix
notation, at some stepr a successive indicator cokriging step is

ξ̄ r
Rr Rr3r

Rr o = ξ̄ r
Rr o (37)

whereξ̄ r
Rr Rr andξ̄ r

Rr o are the multivariate conditional indicator covariances for all
categories or cutoffs, for theRr data residual probabilities matrix at several loca-
tions, and the data versus estimated locations respectively. The bars on top of the
matrices are to explain they are multivariate. The matrix of weights is also multi-
variate3r

Rr o. A sequence of conditional cokriging of indicators is solved following
the procedure of including a new set of data at each step. Indicator multivariate
conditional covariances are needed at each step. For example, if a matrix of con-
ditional covariances between two indicatorsIV (x) = Vx and IU (y) = Uy for two
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classes is needed for locationsx andy, this is computed in matrix form as follows:

ξ̄
r+1
IxUy
=
[
ξr

Vx Vy
ξr

VxUy

ξr
Ux Vy

ξr
UxUy

]
−
[

Λr
VdVy

Λr
VdUy

Λr
UdVy

Λr
UdUy

]T [
ξr

VdVx
ξr

VdUx

ξr
UdVx

ξr
UdUx

]
(38)

whereVd andUd represent indicator data and3matrices are the cokriging weights
from a previousr step cokriging (Eq. 37). In general, at each step indicator
conditional covariances and cross-covariances are updated from previous step as
Eq. (38).

Another simpler version of successive cokriging of indicators is generated by
estimating probabilities from data of a single cutoff or class first and then improve
the estimate with the second cutoff with indicator conditional cross-covariances.
Data from a third and so forth cutoffs or classes are included with conditional
covariances, updated in similar fashion, as explained. This allows to choose only
the significantly correlated classes in the estimation. Successive indicator cokriging
as described previously may allow the use of more information than the classic
indicator kriging. No large systems of equations are solved and the zero lag cross-
covariances and variances are fully computable.

Using a Local Neighborhood With Conditional Covariances

The computation of conditional covariances does not require the use of local
neighborhoods. In practice, however, computer time is reduced if updating con-
ditional covariances is made within local neighborhoods. This is further justified
considering that a covariance model has a range. For example, if a spherical covari-
ance model is used, the loss of information due to the use of a search neighborhood
with a radius slightly larger than the range becomes zero. For other asymptotic
models, the loss may be negligible if the neighborhood is sufficiently large. Note
that the estimates will be unique and identical to ones generated from a global
simultaneous solution. Since the order or sequence in which data are introduced
into the successive estimator does not affect the final estimate as implicitly stated,
the screen effect has not really theoretical importance for successive kriging. This
means the successive solution may indiscriminately incorporate first samples lo-
cated far or near the estimation point. The final numerical estimate and its kriging
variance are the same, although successive weights for each sample are different.
This is consistent with the corresponding development for continuous attributes
(Vargas-Guzm´an and Yeh, 1999; Vargas-Guzm´an and Dimitrakopoulos, 2002).

CONDITIONAL SUCCESSIVE COINDICATOR SIMULATION

The successive cokriging of indicators introduced contributes a new tool for
estimating ccdf’s in the context of indicator simulations. The successive cokriging
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of indicators at a single location will produce the numerical estimate of the non-
Gaussian ccdf for the continuous attributeZ(x). A Monte Carlo drawing from such
numerical ccdf can generate a realization ofZ(x). The new value can be trans-
formed into a vector of indicators that are used to compute residual probabilities
for updating the remaining ccdf’s. In general, the simulation method proceeds step
by step as follows:

a) A conditioning data setÄd is transformed into indicators following one
alternative, cutoffs or class intervals Eq. (1) or (35).

b) The multivariate matrix of indicator covariances functions is computed
and modeled from the data. Note that zero lag distance values are from
Eqs. (33) to (36).

c) The set of indicator data locationsÄd is partitioned into a number of small
subsets{Äp, Äs, . . . , Ät }.

d) Successive indicator cokriging is performed with the indicators for each
subset in{Äp, Äs, . . . , Ät } to estimate the entire domain. Conditional
covariances are updated at each step. If no more data are available, the
simulation is performed at the points of the remaining domain setÄg -
(see Eq. (37)).

e) Update conditional covariances between the point and the domain - (see
Eq. (38)).

f) Following a random path, a location is randomly chosen and a value is
drawn at the point from the estimated ccdf and stored as a point realization.

g) The drawn value is converted to indicator. Then, a residual1zg for each
cutoff or each class is computed between the new value and the previous
estimate.

h) Residuals1zjare used to update estimated conditional probabilities in the
remaining domain with successive indicator cokriging (go to step (f)).

CONCLUSIONS

A new approach for the nonparametric estimation of conditional distributions,
termedsuccessive cokriging of indicators, was introduced. The approach is based
on the successive minimization of the cokriging indicator estimation variance. A
key contribution of the approach is that it provides an alternative solution to estima-
tion of multiple indicators that avoids the problem of inversion of large matrices.
The successive formulation allows for the use of several cutoffs, class intervals,
or categories which are known to have large covariance matrices that produce
instabilities in large simultaneous systems for cokriging of indicators. By allowing
the partitioned use of large data sets on a successive basis, the proposed succes-
sive estimation avoids the simultaneous solution by using conditional indicator
covariances for residual probabilities. At each step, residual ccdf’s are estimated
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with residual data that represent the difference between true indicators and pre-
vious probability estimates. Conceptually, the approach considers that previous
estimated locations have been sampled for updating.

The successive cokriging of indicators introduces the partitioned use of data
sets that facilitates the selection of data, which may affect the quality of the prob-
ability estimates generated. In this way, order relation problems can be detected
and potentially avoided. The approach also facilitates the incorporation of mul-
tiple cutoffs or categories in a sequential fashion, thus improving the quality of
the estimates by reducing the estimation variance or the chance of generating es-
timates outside acceptable ranges of values. The cases of cutoffs as in Eq. (1) or
disjoint categories as in Eq. (35) are included in the proposed approach and have
the advantage that only significantly correlated categories can be used if desired.

It should be noted that if a new set of data becomes available after the esti-
mation of any ccdf, updating of the ccdf with successive cokriging of indicators
is performed without repeating computations. Updating is important for practical
and theoretical purposes in both the estimation and simulation of non-Gaussian
random functions. In the case of sequential-type simulations, the updating process
continues as new values are drawn at previous locations.

Probabilistic analysis of conditional covariances for residuals of indicators
develops a concept of residual probabilities which provides the theoretical frame-
work for the successive solution of indicator kriging and cokriging of indicators.
Lower estimation variance relates to lower dispersion in probability estimates,
which should contribute to substantial reduction of order relation problems as
extreme estimates are considered less probable. Expressing the conditional co-
variances of events in terms of conditional probabilities enables the updating of
the probability of locations being above the cutoff based on either prior or analog
spatial information. Future research could consider developing a consistent way
of generating covariance models for indicators.
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