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ABSTRACT

Electromagnetic full-waveform tomography is computer
intensive and requires good knowledge of antenna character-
istics and ground coupling. As a result, ground-penetrating-
radar tomography usually uses only the first wavelet’s arrival
time and amplitude data. We propose to improve the classical
approach by inverting multiple slowness and attenuation
fields using stochastic tomography. To do so, we model the
slowness and attenuation covariance functions to generate
geostatistical simulations that are conditional to the arrival
times, amplitudes, slowness, and attenuation observed along
boreholes. We combine slowness and attenuation fields to
compute conductivity and permittivity fields from which we
model synthetic radar traces using a finite-difference time-
domain full-waveform algorithm. Modeled traces that best
match the measured ones correspond to the computed con-
ductivity and permittivity fields that correlate best with the
true physical properties of the ground. We apply the method
to a synthetic example with known electric properties. We
show that a combination of stochastic tomography and full-
waveform modeling allows a better selection of permittivity
fields close to the reference field, at a reasonable computing
cost.

INTRODUCTION

Ray-based ground-penetrating-radar �GPR� tomography is a
ell-known imaging technique that allows one to compute the slow-
ess and attenuation of an electromagnetic �EM� wave within a me-
ium. With this method we use the traveltime and amplitude of the
ave traveling directly from a transmitter located in a hole, to a re-

eiver in another hole �Vasco et al., 1997; Lane et al., 1998; Belle-
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eur et al., 2000�. Aside from the optical frequency approximation,
he most important limitation of ray-based tomography is that it
akes into account only the first-arrival wavelet parameters, i.e., the
avelet’s traveltime and amplitude. Ray-based tomography totally
eglects secondary events such as reflected or refracted waves. Al-
hough full-waveform tomography takes these events into account
Cai et al., 1996; Alumbaugh and Newmann, 2000�, the difficulty in
dequately taking into account antenna characteristics �Giroux and
houteau, 2006�, along with the method’s high computational cost,

mplies a need for alternative methods �Luo and Schuster, 1991�.
To overcome the computational burden of full-waveform tomog-

aphy, we propose a two-step method in which ray-based stochastic
imulation �Gloaguen et al., 2003� is used first to generate several
tatistically equivalent realizations of slowness and attenuation
elds, thereby showing the variability that can be expected from the
stimated covariance model. A complete review of stochastic to-
ography, including comparison with classical conjugate-gradient-

ased �LSQR� and projection-based �SIRT� algorithms, can be
ound in Gloaguen et al. �2005�. Once the slowness and attenuation
stimates are obtained, electric conductivity and permittivity are
omputed assuming a nondispersive medium combining all slow-
ess and attenuation simulations �Topp et al., 1980; Hollender, 1999;
ronicke et al., 2004; Day-Lewis et al., 2005; Hyndman and Tron-

cke, 2005; Lesmes and Friedman, 2005�.All the calculated physical
roperty fields are then used to generate pseudo-GPR traces through
nite-difference time-domain �FDTD� full-waveform modeling.
rosscorrelation between computed and observed traces is calculat-
d. For each trace, the maximum correlation delay time is obtained
s well as the maximum correlation value itself. Finally, for each
imulated pseudotrace data set, the delay times and the maximum
orrelation values are averaged. The simulated fields showing the
mallest discrepancy between observed and computed traces are
onsidered to be the fields that best resemble the real one.
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J44 Gloaguen et al.
Furthermore, when one is using borehole reflection surveys or
lectromagnetic logging tools, it is possible to measure velocity and/
r attenuation along the holes. The stochastic simulation method al-
ows one to include these additional data and to fit them exactly. This
eads to a dramatic increase in the accuracy of the solution and to a
ecrease of the uncertainty regarding the slowness and attenuation
stimates �Gloaguen et al., 2005�.

In the following section, the GPR technique and the theory of
PR tomography are briefly introduced and the geostatistical ap-
roach is described. The performance of the proposed method is then
xamined with a synthetic model.

GPR TOMOGRAPHY THEORY

In this section we show how the electric property of a material can
e inferred from EM wave velocity and attenuation. EM theory at ra-
io frequency is briefly discussed, after which slowness and attenua-
ion ray-based tomographies are presented.

M wave theory

The far-field amplitude of an EM wave that is emitted by a dipole
nd is propagating through a homogeneous medium at a distance r is
iven by �Balanis, 1989�:

Ar = A0e−�rei��t−�r�, �1�

here Ar is the wave amplitude at distance r from the transmitter, A0

s the amplitude at the transmitter, � is the attenuation expressed in
p/m, � is the angular frequency, t is the time taken by the wave to

ravel from the source to the receiver, and � is the phase constant in
ad/m.

For lossy and nondispersive media with magnetic permeability of
he free space �0, � and � are given by

�� =
�

c
�1

2
���r

2 + � �

��0
�2

− �r��1/2

� =
�

c
�1

2
���r

2 + � �

��0
�2

+ �r��1/2	 , �2�

here �r is the real relative permittivity or dielectric constant of the
edium, �0 is the permittivity of free space, c is the EM velocity in

ree space with c = 1/�0�0, and � is the real electric conductivity of
he medium. In addition, there is a relation between the velocity of a
adar wave v and its phase �:

v =
�

�
. �3�

By a combination of relations 2 and 3, the permittivity and the
onductivity can be represented in terms of velocity and attenuation:

��r =
�1

v
�2

− ��

�
�2

�0�0

� =
2�

�0v
	 . �4�

These physical properties make it possible to characterize a given
aterial and to estimate the porosity and water content of nondisper-
ive materials using empirical relationships such as the Topp rela-
ion, or in situ calibration �Topp et al., 1980; Gloaguen et al., 2001;
ronicke et al., 2002, 2004; Hyndman and Tronicke, 2005�.

lowness tomography

Several GPR full-waveform tomography techniques exist �Cai
t al., 1996; Alumbaugh and Newmann, 2000�, but each has its limi-
ations. Full-waveform inversion, a typical nonlinear problem, im-
lies iterative computation of forward modeling several times,
hich is a huge computational burden. For example, full-waveform
odeling of ten thousand traces on a 3.2-million-cell model can take

s much as 72 hours on a cluster of a subset of 800 Pentium IV pro-
essors. Such computational costs motivate the use of ray approxi-
ation. If one assumes infinite frequency, a ray can be defined as the

urve that connects a transmitter to a receiver and lies perpendicular
o the wavefront �Berryman, 1991�. For EM waves, the ray geometry
epends on contrasts of the electric properties, and, thus, on the ve-
ocity contrasts as stated by the Snell-Descartes law. In ray-based to-

ography, the field is discretized as a set of cells. For each transmit-
er-receiver pair, the length of each segment of raypath that crosses a
ell is computed. All the segment lengths are organized in a �sparse�
atrix L, called the raypath matrix, which describes the geometry of

he rays. L is of the size nt observed times by np cells �of constant
lowness�. If the ray assumption is acceptable, equation 5 represents
he linear relation between the traveltime vector t and the slowness
ector s:

Ls = t . �5�

Equation 5 represents the forward modeling of the traveltime. The
lowness field must be estimated by the inversion of equation 5. Un-
ortunately, GPR borehole tomography is a prime example of an ill-
osed problem �Berryman, 1991�, so L is not directly invertible.
ote that the raypath matrix L is unknown because it depends on the
elocity contrasts. L is obtained iteratively by first assuming straight
ays �a homogeneous medium� and getting an initial solution of ve-
ocity by cokriging. Using the Snell-Descartes law, a new L is calcu-
ated on the basis of the cokriged velocity field. Cokriging and ray-
ath updating are repeated until the variation between two succes-
ive cokriged velocity solutions becomes negligible.

ttenuation tomography

The relation between the amplitude of the emitted pulse at the
ransmitter A0 and the measured amplitude Ar of a plane wave travel-
ng through a homogeneous medium with a raypath of length r be-
ween the transmitter and the receiver can be written �Zhou and Ful-
agar, 2001� as

Ar = A0e−
0
r��l�dl, �6�

here ��l� is the attenuation of the cell located at distance l from the
ource. The measured amplitudes have to be corrected for the radia-
ion pattern of the antennas and the geometric spreading of the wave
Holliger and Bergmann, 2002�.
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Then, equation 6 becomes

Ar =
A0e−


0

r
��l�dl�e����r���

�
0

r

dl

, �7�

here 1/
0
rdl is the geometric spreading, �e is the correcting func-

ion for the transmitting antenna as a function of angle �e, and �r is
he correcting function of the receiving antenna as a function of an-
le �r. The terms A0, �e, and �r, cannot be known easily and have to
e approximated. This makes amplitude tomography somewhat less
obust than slowness tomography. A0 is approximated by linear re-
ression of the picked amplitudes and transmitter-receiver separa-
ion distances. The angles �e and �r are defined in Figure 1. For bipo-
ar antennas located in the same plane and for homogeneous media,
he antenna radiation patterns � can be approximated by sinusoid
unctions �Zhou and Fullagar, 2001�.

For a given transmitter-receiver pair i, the discrete form of equa-
ion 7 becomes

Ai =
A0e−�j=1

Nj �jlij sin��e�sin��r�

�
j =1

Nj

lij

, �8�

here j is the cell number and Nj is the number of cells.
Rearranging and taking the natural logarithm of equation 8 leads

o

�
j = 1

Nj

� jlij = ln�A0� − ln� Air

sin��e�sin��r�
� . �9�

he raypaths are computed during slowness tomography; Ai is the
easured amplitude, A0 is estimated, and angles �e and �r are com-

uted knowing the raypaths and the hole geometries. Equation 9
eads to a linear equation:

L� = A , �10�

here the ith value of vector A is given by Ai = ln�A0� − ln
Air/sin��e�sin��r��.

As is shown in the next section, this linear system is solved by us-
ng the same procedure as that used for the slowness tomography.

STOCHASTIC TOMOGRAPHY

In this section, the stochastic tomography method based on ray
pproximation is briefly presented. The flowchart of the method is
hown in dashed lines in Figure 2. Theoretical and implementational
etails can be found in Gloaguen et al. �2005� and Giroux et al.
2007�. This algorithm solves both velocity and attenuation tomog-
aphies, which are two linearized problems. Because the algorithm
emains the same and because slowness tomography needs to be per-
ormed prior to attenuation tomography �box 4 in Figure 2�, the nota-
ion used in the following sections is that of slowness tomography.

lowness covariance modeling

The key step of stochastic linear inverse theory comprises the
odeling of the covariance of the parameter �here, the slowness� and
alculation of the cross-covariance between data �here, the travel-
imes� and parameter �Franklin, 1970; Kitanidis, 1995; Asli et al.,
000�. This step is represented in box 1 in Figure 2. In this section,
he proposed covariance modeling technique is presented and the as-
umption on noise distribution is discussed.

As was shown previously, s and t are related linearly �equation 5�.
s a consequence, slowness and traveltime covariance matrices also

re related linearly:

Ct = LCsL
T + C0, �11�

here Ct is the nt 	nt traveltime covariance matrix, Cs is the np 	np

lowness covariance matrix, and C0 is the nt 	nt traveltime-error co-
ariance matrix. This error covariance matrix combines the effects
f the picking error and model discretization used to represent the
eal slowness field. These errors usually are modeled as a nugget ef-
ect �white noise�. Note that only Gaussian noise with constant vari-
nce C0 is taken into consideration. In a real data acquisition, multi-
le sources of error exist: unknown or inaccurately measured bore-
ole deviations and offsets, errors in assumed source-receiver radia-
ion patterns, inaccurate “zero times” in trace recording, and time-
arying output power for attenuation tomography. These errors
ither have to be filtered out prior to analysis or the error matrix has
o be known a priori or assumed to have a specific structure. On the
ther hand, the LCsLT matrix represents the covariance component
n traveltimes because of the spatial structure of the slowness and the
aypath propagation.Also, it is easy to verify that, because of the lin-
arity of equation 5, the cross-covariance between traveltimes and
lowness is given by Cts = LCs.

The slowness covariance matrix Cs is computed by specifying a
odel function or a combination of model functions, with a given

ange a corresponding to the distance after which slowness is uncor-
elated, and with sill C representing the variance of the slowness
box 1 in Figure 2�. The model function parameters a and C are esti-
ated using an iterative search in the low dimension of the func-

ion’s parameter space, by comparing theoretical traveltime covari-
nces with observed traveltime �experimental� covariances �equa-
ion 11�. Good correspondence between theoretical and experimen-
al covariances implies that the data support the choice of parameters
f the slowness covariance function and the function itself �Gloag-
en et al., 2005�.
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igure 1. �a� Example of a synthetic trace, showing the transmitted
avelet �90 to 105 ns� and a reflected wavelet �between 125 and
35 ns�. �b� Corresponding ground model, showing angles allowing
ne to correct the amplitude for the radiation patterns of the antennas
�e is the angle between the transmitting antenna and the outgoing
ay, and �r is the angle between the receiving antenna and the incom-
ng ray�. Tx and Rx are the transmitter and receiver locations, re-
pectively, in boreholes BH1 and BH2.
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okriging and geostatistical simulation

Once the parameters of the slowness covariance function have
een estimated, the slowness field is cokriged using the arrival times
nd any available slowness data �box 2 in Figure 2�. By construction,
okriging gives a smooth estimate of the slowness field, thereby al-
owing numerical stability in the curved ray computation. However,
he cokriged estimate does not necessarily reproduce the modeled
ovariance function and does not realistically represent the spatial
eterogeneity of the ground. It may be desirable and informative to
btain various equiprobable solutions that show the kind of variabil-
ty one can expect from the covariance model that is adopted and
onstrained by the observed traveltimes. Within the geostatistical
ramework, this can be done by using stochastic simulation algo-
ithms �box 3 in Figure 2�. Among the various geostatistical simula-
ion methods �Chilès and Delfiner, 1999�, the fast Fourier trans-
orm–moving average �FFT-MA� algorithm �Le Ravalec et al.,
000� has been retained for its rapidity. The FFT-MAalgorithm gen-
rates nonconditional Gaussian stationary processes on regular
rids, thereby implying that observed traveltimes are not honored.
ostconditioning �Chilès and Delfiner, 1999� is done using cokrig-

ng weights computed at box 2 in Figure 2. This also motivates the
hoice of the FFT-MA algorithm. Finally, each conditional simula-
ion has the desired covariance and any additional slowness con-
traints are fitted exactly. The computed traveltimes on each condi-
ional simulation of a slowness field will not be exactly equal to the

Measured traces 
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Amplitude picking: 
find A0 

Generate N stochastic
 slowness tomography 

Generate N stochastic
attenuation tomography 
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igure 2. Flowchart of the proposed method. The dashed lines and
tochastic tomography method �Gloaguen et al., 2005�. The full lines
he new contribution.
bserved traveltimes because the true raypaths are not the same as
he raypaths used for the postconditioning. Again, this is a manifes-
ation of the nonlinearity between raypath and slowness field. In this
ase, a nugget effect is present in observed traveltimes, and the com-
uted times depart from the observed times by an amount compati-
le with the level of error described by this nugget effect.

PSEUDO-FULL-WAVEFORM TOMOGRAPHY

In this section, we describe the pseudo-full-waveform tomogra-
hy. The flowchart of the method is represented in full lines and box-
s in Figure 2.

Gound-penetrating-radar stochastic tomography provides several
ifferent slowness and attenuation fields that share the same vari-
gram and histogram and that honor the picked amplitudes and trav-
ltimes with the same accuracy. Under the assumption of a nondis-
ersive medium, permittivity and conductivity fields are calculated
y combining attenuation and slowness fields using relation 4 �box 5
n Figure 2�. To select the physical-property fields that best correlate
ith the real permittivity and conductivity fields, we propose to

ompute pseudotraces at the same location as the observed ones
box 6 in Figure 2�. The pseudotraces do not just contain the picked
raveltimes and amplitudes of the first-arrival wavelet. They also
epresent the complete first-arrival wavelet and also possible sec-
ndary events, such as reflections or refractions. The pseudo-

traces associated with the simulated permittivity
and conductivity fields that best match the ob-
served traces are expected to have the highest cor-
relation with the real physical-property fields
�box 7 in Figure 2�.

First, the full-waveform modeling algorithm is
briefly presented, and then the method for com-
paring observed and pseudotraces is described.

Description of the full-waveform
FDTD algorithm

An FDTD implementation of Maxwell’s equa-
tions in cylindrical coordinates was developed to
model the GPR traces. Following Holliger and
Bergmann �2002�, this implementation relies on
rotational symmetry with respect to the boring
axis to transform the 3D equations to 2D. Our im-
plementation is fourth-order in space and also in-
corporates an optional dielectric relaxation term
�as formulated by Carcione and Schoenberg
�2000��. A perfectly matched layer implementa-
tion in complex coordinates �Chew et al., 1997�
is used to eliminate the reflections at the grid
borders.

Observed versus computed traces

Once the traces have been modeled, observed
and simulated trace sets are compared. There are
two parameters of interest: the time shift, which is
mainly related to the permittivity field, and the
amplitude difference, which is mainly affected by
the conductivity.
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A common way of evaluating the misfit between two sets of GPR
races is to compute the crosscorrelation between each set of traces
Yilmaz, 2001�. The crosscorrelation between two complex traces,
1 and t2, is given by the following general equation:

ct1,t2�
 � = �
−�

+�

t1�s�t2��s − 
 �ds , �12�

here 
 is the delay and t2� is the complex conjugate of t2. The 

alue that maximizes the crosscorrelation gives the delay. The most
ccurately computed trace set maximizes the crosscorrelation and
inimizes the delay.

A SYNTHETIC MODEL CASE STUDY

In this section, the method is tested using a synthetic model of the
lectric properties of the ground. Figure 3 shows the synthetic elec-
ric-conductivity field, and Figure 4 shows the synthetic dieletric-
onstant, or permittivity field �hereafter called reference fields�. The
ean and spatial distribution of the electric properties correspond to
sand having moisture content varying from 3% to 30%. FDTD full-
aveform modeling is computed using these two petrophysical
odels to generate pseudomeasured GPR traces �hereafter called

eference traces�. To obtain enough accuracy and to respect stability
onditions, the modeling domain is sampled every centimeter hori-
ontally and vertically and the time step is 0.01 ns. The modeling do-
ain is divided into three adjacent panels, each comprising 60 trans-
itters and 60 receivers, thus leading to 10,800 traces to model.
aussian noise of 3% is added to all the traces to mimic a real acqui-

ition. Figure 5 shows an example of a reference trace for which the
ransmitter is located in the first hole �a distance of 1 m� at a depth of

m, and the receiver is located in the second hole �a distance of 7 m�
t a depth of 7.75 m.

Vertical profiles of permittivity and conductivity along the holes
re extracted from the reference models to provide well-logging
ata. The sampling interval along the holes is 20 cm.
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igure 3. Synthetic electric-conductivity field. Dashed lines indicate
orehole locations. Particular transmitter �Tx� and receiver �Rx� lo-
ations corresponding to the trace shown in Figure 5 are marked.
omography on synthetic data

First-arrival picking was done manually on each reference trace.
sing borehole logging data acquired along the holes and traveltime
ata, an anisotropic slowness covariance model is fitted using equa-
ion 11. The fitted model is spherical, with ranges of 9.5 m perpen-
icular to boreholes and 2.2 m along the holes. The variance is 0.4
ns/m�2. Using the modeled covariances, the logging data, and the
raveltimes, 128 slowness simulations were generated. Two curved
ay iterations were necessary to honor the data. Cokriged models are
nherently smoother than simulated models. Hence, we choose to
ompute the curved raypaths using the cokriged slowness model to
void numerical artifacts during the ray-tracing procedure. This
hoice is also supported by the fact that the radar wavelength is larg-
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igure 4. Synthetic dielectric-constant field. Dashed lines indicate
orehole locations. Particular transmitter �Tx� and receiver �Rx� lo-
ations corresponding to the trace shown in Figure 5 are marked.
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igure 5. Example of a measured �reference� trace �continuous line�,
est-fit simulated trace �dashed line�, and the same simulated trace
hifted by the delay of maximum correlation �dotted line�. The first-
rrival wavelet interval is between 290 and 350 samples, corre-
ponding to an interval of 87 to 105 ns, and a secondary event oc-
urs between 425 and 450 samples, corresponding to an interval of
27 to 135 ns. The time step is 0.3 ns per sample. Tx is located in
he first hole �1 m along the x-axis� at a 2-m depth, and the receiver
Rx� is at 7.75 m in the second hole �7 m along the x-axis�.
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J48 Gloaguen et al.
r than the grid size, and as a consequence the propagation of the ra-
ar wave is weakly affected by local variations. Finally, this ap-
roach is computationally more efficient because the ray-tracing
rocedure is carried out only once every iteration.

Figure 6 shows four randomly selected slowness simulations
rom among the set of 128. Because of restrictions in computational
esources, the tomographic calculations are carried out on a coarser
rid than that used for FDTD modeling: 30 by 30 cm versus 1 by
cm, respectively. As a result of the conditioning, all the simulated

lowness fields share the same global features, that is, alternate lay-
rs of high and low velocity. However, moderate local variations are
nherent in the simulation process. For example, the high-velocity
one at 15-m depth and 10-m distances has different amplitudes in
ach simulation.

For attenuation tomography, the peak-to-peak amplitudes were
lso picked manually. The fitted covariance model is an anisotropic
pherical model with a range of 9 m perpendicular to the holes and
m along the holes. The variance is 2 �Np/m�2. We generated 128

imulations using the previously computed raypaths, and all of them
eproduce the borehole logging data and the modeled covariances.
igure 7 shows the same four randomly selected numbers for attenu-
tion simulations as were used for the slowness simulations in Fig-
re 6. As is the case with slowness tomography, attenuation tomog-
aphy simulations share the same main features except for a few lo-
al differences.

etrophysical property reconstruction and
ull-waveform modeling

The 128 slowness and attenuation simulations were combined us-
ng relation 4, thus resulting in 128 conductivity and 128 permittivi-
y fields. Figures 8 and 9 show four randomly selected conductivity
nd permittivity fields, respectively. As a first interpretation, both
omputed physical-property fields show a good visual agreement
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igure 6. Four randomly selected simulated velocity fields from the
et of 128.
ith the modeled ones �Figures 3 and 4�. Simple correlation �pixel
y pixel� between the reference and computed conductivity and per-
ittivity fields was calculated to measure the fit. Figures 10 com-

rises histograms of the simple correlation between each of the 128
omputed conductivity �CS� fields and the reference field �Figure
0a� and between each of the computed permittivity �CK� fields, and
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igure 7. Same four randomly selected simulation numbers as in
igure 6, here for simulated attenuation fields.
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igure 8. Reconstructed conductivity fields, using the same four ran-
omly selected numbers as for the velocity and attenuation fields in
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he reference field �Figure 10b�. The overall mean and standard devi-
tion of the permittivity simple correlation are 0.886 and 0.006, re-
pectively, whereas the overall mean and standard deviation for the
onductivity are 0.896 and 0.005, respectively. A higher correlation
or conductivity arises because the permittivity is related to the
quare of the less accurate attenuation �relation 4�. Even if the corre-
ations are good, the interpretation is not obvious because the refer-
nce fields were first interpolated at the tomographic resolution. In
ddition, simple correlation only compares the pixel-to-pixel corre-
ation, which does not imply any measure of the connectivity.

In a real experiment, the true physical-property fields are un-
nown and the simple correlation cannot be calculated. Moreover,
ll the simulated fields represent variations of maximum entropy
round the same set of information, i.e., traveltimes, peak-to-peak
mplitudes, logging data, and covariances. To differentiate the 128
imulated fields, new information is needed. In the ray-based meth-
d, time and first-cycle amplitude alone are used. Here, we propose
o use the GPR-trace full-waveform modeling on the simulated
elds to increase the level of information so we can select the best
odel. Therefore, full-waveform modeling is performed with each

air of conductivity-permittivity fields �interpolated to a grid of 1 by
cm�, thereby yielding 128 sets of ten 10,000 traces �hereafter

alled the simulated traces�. Generally, the transmitted wavelet is
ell reproduced and the secondary events also show a good agree-
ent. For example, as shown in Figure 5, the secondary event at

27 ns �425 samples with 0.3 ns per sample� is well reproduced in
erms of shape and amplitude.

To measure the trace-to-trace misfit, crosscorrelation is calculated
etween corresponding traces of each of the 128 simulated trace sets
nd the reference ones. For each trace, time shift and maximum cor-
elation are computed. The mean of the absolute values of the time
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igure 9. Reconstructed dielectric-constant fields, using the same
our randomly selected numbers as for the velocity and attenuation
elds in Figures 6 and 7.
hifts and the mean of the maximum correlation are calculated for
ach simulated trace set, leading to 128 values of time-shift misfit
TSM� and 128 values of amplitude misfit �AM�. Figure 5 shows an
xample of a reference trace and a simulated trace with the same
ransmitter-receiver location. The shifted simulated trace that shows
he maximum correlation with the reference trace also is shown in
igure 5. Figure 10c is the histogram of the mean of the absolute time
hift for the 128 simulated trace sets. The overall mean of the time
hift is ±3.2 samples �or 1 ns� with a standard deviation of 0.15. The
veraged picked traveltime is 65 ns. Figure 10d is the histogram of
he mean of the maximum correlation between pairs of shifted simu-
ated traces and reference traces. The overall mean value is 0.93,
ith a standard deviation of 0.004. It shows that the simulated traces
ave a good fit with the reference ones, both in terms of correlation
nd time shift, thus confirming the quality of our conductivity and
ermittivity estimates.

The scatterplots of the TSM, AM, correlation between simulated-
eference permittivity field �CK�, and correlation between simulat-
d-reference conductivity field �CS� are shown in Figure 11 to evalu-
te the relations between these parameters. Figure 11a shows the
catterplot between TSM and CK �the correlation is −0.4�. Even
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igure 10. Histogram of �a� the correlation between the reference
eld and the 128 computed conductivity fields, �b� the correlation
etween the reference field and the 128 computed permittivity fields,
c� the average time shift between the reference traces and the com-
uted traces, and �d� the mean of the maximum of the crosscorrela-
ion between the reference traces and the measured traces.
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hough the correlation is not very high, Figure 11a shows that the
omputed permittivity fields associated with the smallest time shifts
TSM� better match the reference permittivity field. Figure 11c
hows the scatterplot between AM and CK �the correlation is 0.6�.
igure 11c shows that the computed conductivity fields associated
ith the highest maximum correlation �AM� better match the refer-

nce permittivity field. In addition, it also appears that the most poor-
y correlated permittivity field also corresponds to the set of simulat-
d traces that has the worst fit to the reference traces. Figure 11b
hows the scatterplot between TSM and CS �the correlation is −0.1�,
nd Figure 11d shows the scatterplot betweenAM and CS �the corre-
ation is 0.1�. These low correlation factors indicate that, in our ex-
mple, conductivity cannot be selected easily, as opposed to permit-
ivity. However, even if correlation between AM and CS is poor, the
omputed traces that have the highestAM �with a maximum correla-
ion greater than 0.94� are related to CS, showing a correlation above
he mean of 0.896. This information makes it possible to discard the

ost poorly correlated conductivity fields.
Thus, the TSM and AM have a strong correlation with CK and a

eaker correlation with CS. This means that full-waveform model-
ng helps in the selection of simulated fields with permittivity closer
o the reference permittivity field. The small correlation with CS in-
icates that TSM and AM cannot be used to select simulated fields
aving a conductivity closer to the reference field �note, however,
hat all simulated fields have strong CK and CS values, which indi-
ates that they are all strongly correlated to the reference field as a re-
ult of the conditioning of traveltime and amplitude data�. The lack
f sensitivity of TSM and AM in distinguishing the best simulated
onductivity fields can be caused by many factors: loss of resolution
ecause of the coarser tomography grid used to compute CS, insuffi-
iency of the correlation coefficient to grasp the subtle differences
etween fields because it does not consider connectivity informa-
ion, and weak intrinsic relations among TSM, AM, and CS. Addi-
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igure 11. Scatterplots of �a� TSM versus CK, �b� TSM versus CS,
c� AM versus CK, and �d� AM versus CS, where TSM is time-shift
isfit, AM is the amplitude misfit, CK is the correlation between

imulated and synthetic permittivity fields, and CS is the correlation
etween simulated and synthetic conductivity fields.
ionally, the AM criteria might perform better for models with sharp
onductivity contrasts, which yield stronger secondary arrivals. Fur-
her study is required on this subject.

CONCLUSIONS

Arrival times and amplitudes can be used to model slowness and
ttenuation covariance functions and then to geostatistically simu-
ate slowness and attenuation fields. The simulated attenuation and
lowness fields can be combined to obtain several permittivity and
onductivity fields. That set of electric-property fields allows com-
utation of as many pseudo-GPR-trace sets, thus showing the vari-
bility that can be expected from the survey geometry and the mea-
ured data. Our synthetic test case presented good raypath coverage
nd known slowness and attenuations at boreholes. As a result, all
eostatistically simulated fields presented high correlations �above
.88� with the reference field, as did the simulated traces with the ref-
rence traces �above 0.915�. We showed that high trace correlations
AM� correspond to high permittivity correlations �CK� between
imulated and reference fields. This result is important in real appli-
ations because only the traces are available. Thus, it is possible to
elect more realistic permittivity fields by maximizing the match be-
ween simulated traces and reference �or observed� traces, following
ur approach. On the other hand, we found no significant link be-
ween the traces match and the conductivity-fields match.
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