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oussos Dimitrakopoulos and Marcelo Godoy

Open pit design and production scheduling deals with the quest for the most
profitable mining sequence over the mine’s life. The dynamics of mining ore
and waste and interactions with spatial grade uncertainty make the prediction
of the optimum mining sequence a challenging task. This paper examines an
optimization approach to open pit production scheduling based on the effective
management of waste mining to maximize net present value (NPV) and in relation
to the presence of grade uncertainty for both ore and waste. The approach
considers an economic model, the specific mine set-up, mining and processing
specifics including production equipment, as well as the development of a
combinatorial optimization formulation that integrates multiple grade realizations
of the deposit to produce a single optimal life-of-mine production schedule. The
efficient use of grade uncertainty and mining rates leads to schedules that are
risk-resilient, as well as a substantial improvement in project NPV compared to
conventional methods. A case study from a gold mine demonstrates the approach
and illustrates the potential economic benefit.
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INTRODUCTION

In surface mining, the need to assess
and manage risk for project valuation
and decision-making translates to the
need to assess and manage risk in any
pertinent parameter of open pit design
and production scheduling. This can
only be achieved if quantified uncer-
tainty is taken into account in the mine
optimization  process.  Geological
uncertainty is seen as a major contri-
buter to not project
expectations. The problem of gquanti-
fying geological uncertainty in open pit
design and production scheduling can
be addressed in the context of
stochastic simulation (Dimitrakopoulos,
2004). Optimization in mine planning
has been accepted as a set of techni-
ques that introduce  analytical
mathematical methods into mine plan-
ning (Lane, 1999). In the presence of

meeting

risk, effective optimization calls for the
use of advanced mine optimization
techniques that are able to take into
account the stochastic nature of several
influencing variables and constraints.
Unfortunately, to date there has been
limited success in developing such
techniques, which remain the subject of
on going research (eg Dimitrakopoulos
and Ramazan, 2004. Ramazan and
Dimitrakopoulos, 2004; Menabde et al,
2004).

This paper presents an optimization
approach that integrates grade uncer-
tainty into the optimization of long-term
production scheduling. A general
framework for long-term production
scheduling is reviewed and extended
through combinatorial optimization to
allow effective minimization of risk in
not achieving production targets due
to geological uncertainty. The approach
has the ability to minimize deviations

from production target variables to
acceptable

ranges. An application
developed in a large open pit gold
mine is presented to show the potential
economic benefits of the propose
approach. Some of the production
scheduling concepts considered in the
approach proposed herein originate
from Russian mining (Rzhenevisky, 1968)
and are considered in Tan and Ramani
(1992) in formulating optimization
models. Recently, Godoy (2003) revisits
the concepts in the context of modern
open pit scheduling optimization and,
in particular, scheduling optimization
based on nested pits (Whittle and
Rozman, 1991). The framework consi-
dersthe open pitproduction scheduling
optimization process as the determina-
tion of a sequence of depletion
schedules involving the removal of at
least two types of material, namely, ore
and waste. Two major technical constra-
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Schematic representation of three mining schedule configurations: (a) worst case mining schedule, each
successive bench is mined out before starting the next; (b) best case mining schedule, each successive bench
of the smallest pit is mined sequentially and then each successive bench of the next cutback and so on.
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A feasible domain of ore production and waste removal, bounded by
the worst case (top) and best case (bottom) schedule.

nts involved in the determination of
such  schedule are: (a) the feasible
combinations of ore and waste produc-
ion (stripping ratio), and (b) the cre
oroduction rate that meets the mill feed
equirements. From the theoretical
boint of view, the determination of an
optimal production scheduling in an
open pit mine must be done within a
0-called “"feasible domain” of solu-
ions. The framework considered in this
baper establishes this domain based on
wo extreme cases of deferment of
vaste mining: (a) “worst case”, which
orresponds to mining out each succe-
sive bench before starting the next.
his schedule provides the maximum
juantity of waste that can be removed
rom the pit in order to recover a certain
imount of ore (highest stripping ratio)
ind it is graphically illustrated in Figure
a. The second extreme case of mining

is the (b) "best case”, which corres-
ponds to the sequential mining that just
extracts the minimum necessary quan-
tity of waste to uncover a certain
amount of ore (lowest stripping ratio),
while still providing the necessary
working room and the safety of the
operations. This schedule is graphically
illustrated in Figure 1b. The solution
domain of ore production and waste
removal can be represented in the form
of a cumulative graph, bounded by the
curves of the best and worst mining
cases. The solution domain accounts
for all physically possible combinations
stripping ratios. An example of such a
graph, developed for a gold deposit, is
shown in Figure 2.

An optimal schedule, in terms of NPV,
will follow the curve representing the
minimal possible quantity of waste. A
key variable involved in the determina-
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tion of an optimal waste remaval curve
is the mining capacity. Tan and Ramani
(1992) proposed a linear programming
(LP) model to solve such optimization
problem. This LP model is used herein,
extended to include periodic
stabilisation of mining rates, so as to
avoid  solutions with  unpractical
fluctuations in mining capacity, and
metal optimization. The optimization
model| delivers a life of mine schedule
of waste removal and a prescription for
the formation of mining capacity, given
a predefined ore demand function and
a set of possible models of mining
equipment. This schedule maximizes
the project’s NPV for a set of economic
and technological parameters.
However, the formulation similarly to
that in Tan and Ramani (1992), does not
provide the physical mining sequence
and, therefore, does not provide a
complete solution to the long-term
scheduling problem.

To overcome this limitation, a proce-
dure is proposed herein that consists of
decomposing the long-term scheduling
problem into two sub-problems. First,
the determination of optimum mining
rates for the life-of-mine; and, second,
the generation of a detailed mining
seguence constrained by the previously
determined mining rates. The approach
is general and independent of the
scheduling formulation used to produce
the detailed mining sequence. The first
sub-problem deals with the objectives
of ore production, stripping ratios,
major investment in  equipment
purchase and average operational
costs. The second sub-problem focuses
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on the spatial evolution of the mining
sequence and the equipment use and
provides a more precise assessment of
operational costs.

In the following sections, the
proposed multi-stage approach is first
presented, emphasizing the combina-
torial optimization part of the approach
that generates the risk-based life of
mine production schedule. Then, an
application at an open pit gold mine
elucidates the practical aspects of the
approach and provides a comparison
with  the traditional optimization
approach.

A NEW RISK-BASED APPROACH
TO PRODUCTION SCHEDULING

The risk-based (stochastic) approach
to production scheduling optimization
proposed here is conceptually very
different from the traditional determi-
nistic one. In all
approaches the optimization formula-
tion processes a single estimated
orebody model to produce a mining
schedule. Since this type of estimated
orebody models is based on imperfect
geological knowledge, estimation
errors, including the inevitable smooth-
ness of "average” mining block grade
estimates, are propagated to the
various mining processes involved in
the optimization (in general, a non-
linear operation). The final result is a
single and often biased, forecast for the
economic outcome of the production
schedule (Dimitrakopoulos et al., 2002).
In the stochastic framework, geological
uncertainties are characterised by a

deterministic

series of equally probable models of
the orebody, as produced by condi-

tional simulation techniques
(Dimitrakopoulos, 1998; 2004). The
multi-stage  optimization  algorithm

presented herein takes simultaneously
all these models into account, so as to
produce the single optimal mining
schedule under grade uncertainty. A
consequence of the above is that
instead of providing a single biased
forecast for the economic outcome, this
multistage approach yields a range of
possible economic outcomes along
with a single risk-based schedule. One
of the most important features of the
approach is its ability to minimize the
ranges of wvariation of economic
outcomes, thus allowing for the minimi-
zation of the geological risk associated
with the generated schedule.

The proposed approach first gene-
rates a series of mining schedules, each
corresponding to a simulated reali-
sation of the spatial distribution of
grades. These mining sequences are
optimized within a common feasible
domain and post processed to provide
a single optimal mining sequence,
which minimizes the chance of deviating
from the target production figures. The
approach proceeds in the following
stages:

1.Derive a stable solution domain of
ore production and waste removal
stable to all simulated models of the
distribution of grades within the
orebody.

2.Determine the optimum production
schedule within the solution domain

derived in the first stage above, using
a linear programming (LP) formula-

tion. This will generate optimum
mining rates for the life-of-mine |
scheduling. :

3.Foreach one of the simulated models,
generate a physical mining sequence
constrained to the mining rates
derived in the second stage (note that
all are sub-optimal mining sche-
dules).

4.Combine, using combinatorial opti-
mization, the mining sequences |
generated in the third stage to
produce a single optimal mining -
sequence that minimizes the chances
of deviating from production targets.

First stage: Derivation of the
stable solution domain |
Start by considering N equi-probable -
simulated orebody models S,....S;
mapping the space of uncertainty for a
given continuous attribute; an ultimate
pit limit; and a sequence of cutbacks.
Generate a series of N cumulative
graphs of ore production and waste
removal (feasible solution domain), one
for each simulated orebody model. The
“stable solution domain” (SSD) is then
defined as the intersection of all feasible
domains (Godoy and Dimitrakopoulos,
2004). This solution represents a
domain that provides 100% confidence
on the contained reserves. The proce-
dure is general and independent of the
objectives driving the optimization of
the production scheduling. Figure 3
illustrates the SSD for a series of
simulated models in a gold open pit
mine.
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Example of the stable solution domain (SSD) of ore production and
waste removal derived from six simulated orebody models.

Second stage: Schedule
optimization

The second stage corresponds to the
optimization of the production sche-
dule in terms of ore production and
waste removal. It incorporates the LP
optimization model discussed in the
previous section. Note that an addi-
tional main difference here from Tan
and Ramani (1992) is that the solution
domain is now based on a series of
simulated orebody models. Involving
also the economic parameter unit
purchase and ownership costs of each
type and model of mine equipment
available, the stabilization of the mining
rate over time periods is determined as
a search for the balance between the
purchase and ownership costs of the
production capacity. This represents a
direct incorporation of the capital
investments in the production schedu-

ling optimization. Further details on the
optimization model in this second stage
are in Godoy and Dimitrakopoulos
(2004).

Third stage: Mining sequencing

This third stage aims to produce a
series of physical schedules describing
the detailed spatial evolution of the
working zones over the life-of-mine.
Any formulation able to perform mining
sequencing can be used for this task.
The requirement is the ability to cons-
train the sequencing to obey slope
constrains, maximize the equipment
utilization, and meet mill requirements
while matching the mining rates previo-
usly derived by the optimization. The
procedure consists of producing

multiple mining sequences, one for
each simulated grade model. These
multiple alternative mining sequences
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present two specific properties that will
allow the derivation of a single
sequence: (a) They are all technically
feasible solutions that maximize the
project’s NPV within a common stable
solution domain. (b) They are based on
distinct but equiprobable models of
the spatial distribution of grades within
the mineral deposit.

It is important to stress at this point
that selecting and using one or few
“representative” simulated realizations
of the orebody for scheduling proposes
is an erroneous practice and leads to
misleading schedules.

Fourth stage: Combinatorial
optimization

The fourth stage requires a combina-
torial optimization algorithm to be
developed to generate a single mining
sequence  from  the  alternative
sequences produced in the third stage.
The algorithm that has been developed
is based on simulated annealing, a
technique for solving combinatorial
optimization problems such as the
minimization of functions of many
variables (Kirkpatrick et al., 1983). The
key idea is to continuously perturb a
sub-optimal  configuration until it
matches some pre-defined characteris-
tics expressed in an objective function
at an acceptable level.

The optimization starts by selecting
an initial mining sequence where blocks
with maximum probability of belonging
to a given period are frozen for that
period. The maximum probability
threshold is user defined. Subsequently,
the selected initial sequence s
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perturbed by randomly swapping
selected blocks between candidate
periods. All favourable perturbations
(i.e. where the objective function is
lowered) are accepted, whilst all unfa-
vourable perturbations are accepted
with an exponential probability distri-
bution. The optimization is considered
complete when additional perturba-
tions do not lower the value of the
objective function or when a specified
minimum objective function value is
reached.

The cbjective function is defined as a
measure of the difference between the
desired characteristics and those of a
candidate mining sequence. In this
case, the measure is the average
deviation from the production targets
for a given mining sequence over a
series of S simulated grade models. It is
defined as the sum of N components:

-3 [8

6,(5)-0,(5)+ >

m; (8)—w, (5)‘}
M

where, n=1,...,N are the component
objective functions, each correspon-
ding to one of the production schedule
periods. For each n component, the
objective function measures the
average deviation of ore and waste
production 8,(s) and ® (s)of the
perturbed mining sequence from the
target productions 0 (s) and ® (s)
over all S simulated grade models with
s=1,...,5. The decision of whether to
accept or reject a perturbation is based
on the change to the objective function
in Equation 1.

Recalculations of the global objective

n=1 s=1

function can be replaced by a selective
update of the component objective
functions involved in the perturbation.
The resulting sequence meets the
production target for each period with
minimum chance of deviation, i.e., this

mining sequence will achieve the
production targets, within the pres-
cribed mining rates, given any of the
simulated orebody models. The swap-
ping mechanism is an important aspect
of the annealing procedure above. To
guarantee the feasible final solution,
the perturbation mechanism must be
able to recognise the spatial evolution
of the mining sequence. To accomplish
this, the swapping mechanism is set to
limit the candidate periods for any
given block to only those that will have
physical access to the block without
violating slope censtraints.

In addition to the objective function
and the perturbation mechanism, a
critical aspect of simulated annealing-
based algorithms is a prescription for
when to accept or reject a given pertur-
bation. The acceptance probability
distribution is given by the Metropolis
criterion (Metropolis et al, 1953):

Lo i 0 20y
P{accpet}:l OO

Le T otherwise

All favorable perturbations updated
from O, te O, . (O£ 0. ) are acce-
pted and unfavorable permutations are
accepted with an exponential probabi-
lity distribution. The algorithm s
stopped when a low cbjective function
value (O_ ), indicating convergence, is
reached. A so-called “cooling” function
controls the rate of decrease in time of

the parameter T, also known as “tempe-
rature”, of the exponential distribution.
The higher T is, the greater the probabi-
lity that an unfavorable perturbation
will be accepted.

The parameter T must not be lowered
too fast because the mining sequence
may get trapped in a sub-optimal
situation and never converge. However,
it T is lowered too slowly, the conver-
gence may be unnecessarily slow. The
specification of how to lower T is known
as the annealing schedule. The idea is
to start with an initially high t_ and lower
it by a multiplication factor A whenever
enough perturbations have been acce-
pted (K,.,,) or too many have been
tried (K__). The algorithm is stopped if
K., is reached Sm times, where Stp is the
parameter “stopping
number”. The algorithm is also stopped 'l
if a maximum number of swaps is
reached or after reaching a maximum

known as

Table N°1: Parameters used for
the annealing schedule.
E 0.000000001
A 0.1
K 85000
K 50000
accept
S 20
tp
(@ 100000
MaxSwap 100000000
MazxNoChange 100000
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number of swaps with no change in the
objective function. These parameters
are named MaxSwap and MaxNo-
Change respectively (see Table 1).

The method presented in this section
provides a framework for the derivation of
a single schedule that minimizes the
chances of deviating from production
targets, given the uncertainty assessment
from the available information. Precedence
constraints built into the perturbation
mechanism are designed to recognize the
spatial evolution of the mining sequence,
which is restricted by pit slope constraints.
These mining sequences are produced by
an external mining sequence algorithm
and must reflect mining practices and
technological constraints.

APPLICATION IN AN OPEN PIT
GOLD MINE

An application of the proposed
method is carried out at the Fimiston
open pit mine, Western Australia,
Australia’s premier gold mine. This
application starts by the development
of a “Base Case"” schedule for the life of
the mine. The development of a Base
Case schedule aims to produce a
benchmark against which the potential
economic benefits of the new risk-
based optimization approach can be
evaluated.

The Base Case schedule was deve-
loped using a traditional estimated
model for the distribution of grades, as
used in the conventional approach. The
mining capacity was formed with a
combination of Komatsu PC8000 face
shovels, CAT994 loaders and CAT793C
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trucks. A constant mining capacity of
85Mtpa was adopted. The schedule of
ore production was identified with the
mill demand. Both the schedule of
mining capacity and ore production are
presented in Figure 4. It is important to
note that the fluctuations in ore produc-
tion do not indicate a variable mill
production rate. The mill production
rate is constant over the life of the mine.
Periods characterised by a reduction in
ore demand only indicate input of ore
from external sources such as, for
example, underground operations and
stockpiles. A risk analysis on the Base
Case schedule, using a set of simulated
models, was also carried out. This risk
analysis was developed by taking the
Base Case mining sequence, which
indicates which blocks are to be mined
in each period, and evaluating the
schedule outcome for each one of the
simulated models. The procedure
generates a distribution of responses,
or a range of alternative outcomes for
key project indicators and is similar to
that employed in Dimitrakopoulos et al.
(2002).

Figure 5 presents the Base Case
predictions and the risk profile obtained
for the annual and cumulative
discounted cash flows, respectively.
The expected NPV is approximately
11% less than the indicated by the initial
predictions of the Base Case schedule.
Figure 6 presents the results obtained
from the risk analysis on the ore
production and the initial predictions of
the Base Case schedule. The average
expected deviation from the Base Case
prediction shows a deficit of approxi-

mately 1.3Mt per year. This result shows
that the Base Case schedule is unable

to meet the predicted mill feed
tonnage.

Note that the use of optimal mining
rates, using the approach in the second
stage without grade risk and in combi-
nation with the conventional methods
used in the Base Case, provides some
relatively small improvement and leads
to some improvement of total NPV.
However, similarly to the Base Case
schedule, it does not meet production
targets, as shown in Godoy (2003).

The application of the risk-based
approach starts, as outlined previously,
by the derivation of the stable solution
domain, the optimization in stage two
carried out within the SSD. The resulting
prescription of ore and waste produc-
tion and the selection of mining

Figure N°6
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obtained from the risk analysis in ore
production. The bars indicate the
absolute average deviation from the
target. The largest deviations belon-
ging to years 2002, 2005 and 2008 are
respectively 357,000t, 347,000t and
265,000t. The magnitude of these
deviations is considered very small and
could be easily managed by rehandling
ore from alternative sources, especially
for those years presenting a shortfall.

In terms of NPV, shown in Figure 9, the
expected outcome corresponds to an
increase of 28.3% in relation to
predicted NPV for the Base Case sche-
dule. This difference reflects both the
deferment of waste mining and the
reduction in the life of the mine. One of
the major contributions to the increased

NPV comes from the reccvered metal,
the risk-based schedule recovers the
same metal quantity first predicted by
the Base Case but a main difference is
that it does so sooner.

Important aspect of the case study is
that it demonstrates how risk-inclusion
leads to a counterintuitive risk reduction
and simultaneous increase of NPV, that
are both substantial. In addition, the
case study makes a distinct case for
risk-based (stochastic) optimization
against what is seem as the inherent
limits of conventional technologies.

CONCLUSIONS

This paper presented a new risk-
based optimization formulation for
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long-term production scheduling. This
new multi-stage formulation was used
to preduce a minimume-risk and higher
profitability life-of-mine schedule for a
large open pit gold mine. The results
obtained document that the proposed
optimization approach has the potential
to considerably improve the economic
state and forecasts for the life-of-mine,
when compared with conventional
(non-risk based) scheduling practices.
The results not only show a potential
increase of 28.3% in the value of the
mine, but also provided a schedule that
minimizes the chance of deviating from
mill feed requirements.

Major contributions to the increased
NPV come from: (a) the recovered
metal, the risk-based schedule recovers
the same metal quantity first predicted
by the traditionally generated Base
Case but a main difference is that it
does so sooner; and (b) the simulta-
neous use of simulated orebodies
allows for the effective management of
the upside potential and downside risk
from the deposit’s grade and metal
uncertainty.

The approach has shown to be able to
capitalise in both the deferment of waste
mining and the assessment as well as
inclusion of grade uncertainty, leading to
maximized economic returns and driving
the mining sequence through zones
where the risk of not achieving the target
ore production is minimized. The
approach provides not only a risk resilient
solution to the production scheduling
problem but an increase in asset value by
considering an inherent source of uncer-
tainty and risk. This ability represents a
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major advance in the risk management of ¥ 5
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of risk-based optimization, as well as
the move forward from the current
conventional  industry  practices,
concepts and their limits. Uncertainty in NPV: Base Case versus Risk-Based Approach
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