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ABSTRACT 

The maximization of mining project discounted cash flows by defining the 

best sequence of extraction of underground materials requires 

understanding the availability of uncertain metal quantities throughout the 

deposit. This thesis proposes two versions of a stochastic integer 

programming formulation based on surfaces to address the optimization of 

life-of-mine production scheduling, whereby the supply of metal is 

uncertain and described by a set of equally probable simulated orebody 

models. The first version of the proposed formulation maximizes 

discounted cash flows, controls risk of deviating from production targets 

and is implemented sequentially, facilitating production scheduling for 

relatively large mineral deposits. Applications show practical intricacies 

and computational efficiency. The second variant extends the first to a 

two-stage stochastic integer programming formulation that manages the 

risk of deviating from production targets. The sequential implementation is 

considered first for pit space discretization and it is followed by the life-of-

mine production scheduling at a relatively large gold deposit. The case 

studies show the computational efficiency and suitability of the method for 

realistic size mineral deposits, with production targets controlled, risk 
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postponed to later stages of production and improvements in expected 

NPV, when compared to deterministic industry practices. 
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ABRÉGÉ 

La maximisation du flux de trésorerie actualisé des projets miniers fait en 

définissant la meilleure séquence d’extraction de matériaux souterrains 

exige une bonne compréhension  de l’incertitude sur la disponibilité de la 

quantité de métal provenant du gisement souterrain. Ce mémoire propose 

deux formulations basées sur des surfaces afin d’optimiser la séquence 

d’extraction tout au long du projet où la quantité de métal est incertaine et 

décrite par un ensemble de simulations équiprobables. La première 

simulation maximise le flux de trésorerie actualisé, contrôle le risque 

d’écart par rapport aux objectifs de production et est implémentée de 

façon séquentielle, ce qui facilite la planification pour des gisements 

relativement grands. L’application de cette formulation sur des problèmes 

montre une complexité pratique et une efficacité computationnelle. La 

seconde formulation étend la première en une formulation stochastique en 

nombres entiers à deux étapes qui permet de gérer le risque d’écart par 

rapport aux objectifs de production. L’implémentation séquentielle 

considère d’abord une discrétisation du gisement  puis génère une 

séquence d’extraction annuelle et est appliquée sur un dépôt d’or de 

grande taille. Les études de cas montrent l’efficacité computationnelle et 

une adaptation adéquate pour des problèmes de taille réelle avec des 
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objectifs de production contrôlés, un risque reporté à des étapes 

ultérieures du développement et une amélioration dans la valeur nette 

actualisée comparée aux meilleures pratiques déterministes de l’industrie.  
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Chapter 1 - INTRODUCTION 

 

1.1 Uncertainty in Life-of-Mine Production Scheduling 

Mining is the activity of extracting underground materials in a given 

sequence such as to maximize the discounted cash flow of a mining 

project (Hustrulid and Kuchta, 2006). Planning this sequence of extraction 

requires understanding the availability of metal quantities throughout the 

deposit, which is dominated by uncertainty due to the sparse sampling 

grids. Estimation methods define single grades at each location (mining 

block), reproducing overall average grades but do not describe the 

inherent geological uncertainty over the deposit. Defining a life-of-mine 

production schedule requires analysing joint distributions of the 

uncertainty in metal content over mining blocks grouped at different 

locations over time; therefore, the assumption of perfect knowledge given 

by a single estimated orebody model is a limited practice, incapable of 

assessing the joint local geological uncertainty that relates the metal 

content and economic value of blocks in space. Conventional optimization 

methods ignore that production scheduling is a “non-linear transfer 

function”, where averaged grades used as input do not provide schedules 
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with production controlled in average, thus with consequences to all 

project indicators, including mine production and cash flow forecasts. 

Quantifying and using geological uncertainty involved through the use of 

stochastic simulation methods (Goovaerts, 1997) is a step forward in 

assessing the risks associated to mine planning and production 

scheduling. Stochastic mine production scheduling allows for adequate 

control over mining and processing targets, returning risk profiles to 

decision makers, instead of single answers given by conventional 

methods. Stochastic integer programming (Wolsey, 1998; Birge and 

Louveaux, 1997), or SIP, is a mathematical optimization framework 

capable of modeling and solving mine production scheduling problems. A 

limit of SIP approaches in the past (Ramazan and Dimitrakopoulos, 2012; 

Boland et al., 2008) is the size of the problem, which is addressed herein 

with the use of surfaces (Goodwin et al., 2005) in a more efficient 

implementation. A mine schedule can be seen as a set of surfaces in 

space that divides the orebody into parts to be mined during different 

periods. 

1.2 Goal and Objectives 

The goal of this thesis is to address life-of-mine production scheduling 

under metal content uncertainty through the presentation and 
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development of a new SIP model based on surfaces. The objectives 

involved in reaching this goal are: 

1. Review the literature over conventional and stochastic mine 

planning optimization. 

2. Formulate a new stochastic integer programming model based on 

surfaces, its implementation and testing for life-of-mine production 

scheduling under geological uncertainty; then, apply the formulation 

to a copper deposit. 

3. Extend the formulation above to accommodate a two-stage SIP 

model for mine production scheduling where the recourse actions 

manage the risk of deviating from production targets; then, apply 

the formulation to a gold deposit. 

4. Provide conclusions and suggest future work on the topic. 

1.3 Thesis Outline 

The thesis is organized according to the following chapters: 

 CHAPTER 1: The subject of this thesis is introduced, including 

goals, objectives and a thesis outline. 

 CHAPTER 2: Literature review on life-of-mine production schedule 

optimization under uncertainty, including related topics and 

limitations of conventional methods. 
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 CHAPTER 3: A new mathematical SIP formulation based on 

surfaces and a sequential implementation are presented, followed 

by testing the implementation and application at a copper deposit. 

 CHAPTER 4: An extension of the formulation above to a two-stage 

SIP formulation based on surfaces is presented and tested at a 

gold deposit. 

 CHAPTER 5: Conclusions with future work on this topic are 

discussed. 

 APPENDIX A: Implementation details. 

 APPENDIX B: CD with data and programs used. 
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Chapter 2 - LITERATURE REVIEW 

 

2.1 Conventional Mine Production Scheduling 

Mine production scheduling deals with deciding which mining blocks to extract 

and when, so as to maximize the project NPV and respect physical and 

production constraints. Mine scheduling is a part of strategic mine planning, 

which relates to a broader view of a mining complex (King, 2009; Whittle, 2007). 

Industry best practices optimize separate parts of the mining chain and assume 

simplifications, for example ignoring geological uncertainty through the use of 

estimation techniques, which serves to make algorithms incapable of returning 

truly optimal solutions. 

Conventional mine planning starts by finding ultimate pit limits, which is the 

combination of blocks that maximize the total discounted cash flow of the project 

and respects slope constraints. This can be modelled using graph theory by 

assigning one node to each block and associating precedence constraints within 

directed arcs. The LG algorithm (Lerchs and Grossman, 1965) and its nested 

implementation (Whittle, 1999) is the most popular method for solving this 

problem. It starts by creating a dummy root node and connecting every node 

(block) to it; arcs are initially directed from the root to the nodes. All arcs are 

labeled as strong, if connected to positive nodes, or weak if connected to 
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negative. The algorithm iterates connecting strong nodes to their predecessors, 

in order to respect slope constraints. At each step, arcs are removed in order to 

maintain the tree structure. The remaining arcs are relabelled (away or towards 

the root; strong or weak). The process stops when all strong nodes connected to 

the root have their predecessor relations checked; that is, all profitable parts of 

the mine are selected and slope angles respected. Zhao and Kim (1991) 

developed a more efficient algorithm that does not require a dummy node and 

iterates over many directed trees instead of updating a single one. The paper 

also documents some strategies to improve computational performance, defining 

templates for slopes management, a maximum bottom pit and a specific search 

procedure for connecting ore and waste blocks. 

Whittle Software (Whittle, 1988, 1999) is known to have the most efficient 

implementation of the LG algorithm with additional capabilities that allow for 

discounting, which has led the software to become the reference of “best” 

practices in the industry. In this implementation, positive blocks are initially 

flagged to be mined. Their predecessors that are flagged not to be mined must 

be linked by arcs until there are no more predecessors for the entire branch, or 

the branch assumes an overall negative value. The algorithm terminates when all 

branches have been checked. Within ultimate pit limits, Whittle Software 

economically discretizes the space defining a series of nested pits that generates 
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increasing pit-by-pit discounted cash flow profiles for deposits with millions of 

blocks (Whittle, 1988). For doing so, it runs the LG algorithm for different “metal 

costs of mining”, which is the quantity of metal that needs to be sold to pay for 

the cost of mining one tonne of waste. The higher the value of this parameter, the 

smaller will be the pit generated. These values can be manipulated by defining a 

series of revenue factors, where factor 1.0 means the actual metal price. A 

modified version of the 3D LG algorithm based on the algorithm from Vallet 

(1976) and presented by Seymour (1995), allows for generating a series of 

nested pits at once, instead of running pit optimization successive times for 

different parameters. The graph tree algorithm keeps track of the mass, value 

and strength (value/mass) of each branch; connecting arcs from weaker to 

stronger branches and pruning others through successive passes. The final 

solution is a sequence of branches in order of decreasing strength, where each 

nested pit is found by adding the blocks of each branch.  

The main drawback of these discretization strategies is the “gap effect”, which is 

due to the inability of the methods to control capacity constraints, allowing for 

cases where, for example, the amount of material contained in between two 

consecutive nested pits is bigger than mining and/or processing capacities. 

Therefore, nested pits are usually grouped to form mining phases (pushbacks), 

which are later used for guiding the mine scheduling optimization process. At 
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present, there is no algorithm able to guarantee optimal pushback designs that 

consider operational geometric constraints. 

The question of finding ultimate pit limits is also equivalent to the known 

maximum closure problem, where each closure represents a set of blocks which 

necessarily includes all their predecessors. Assigning net values to each node 

(block) of the graph, the maximum closure gives the optimum pit limits. This 

problem can be modelled adding source and sink nodes connected to positive 

and negative valued nodes, respectively (Picard, 1976). The maximum closure is 

given by the minimal cut of this network, which can be efficiently found by 

maximum flow algorithms, considering their primal-dual relation. Hochbaum and 

Chen (2000) comment on the theoretically lower complexity of max-flow 

algorithms if compared to the LG algorithm; however, Whittle Software (2012) 

implementation is more efficient. Hochbaum (2001, 2008) proposes the lowest 

label pseudoflow and the highest label pseudoflow algorithms which adapt the 

LG algorithm to a network flow model, allowing for the use of capacity constraints 

for millions of nodes but not guaranteeing flow conservation. 

The objective of the open pit mine production scheduling optimization is to assign 

mining periods to blocks, deciding if each block is going to be mined and when, 

maximizing the expected net present value and complying with established 

constraints. For decades, this problem has been studied and is recognizably 
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complex due to the number of binary variables associated to the decision of 

if/when each block should be mined; therefore, most of the exact current 

methods fail to return solutions for large deposits. The only reason for finding 

ultimate pit limits prior to mine production scheduling is computational, issue that 

has been overcome with recent improved methods and computational 

capabilities. Approaches have been proposed to reduce the size of the problem 

without using heuristics, such as Ramazan et al. (2005), but aggregation based 

simplifications imply loss of resolution, reduces the space of possible solutions 

and smooth results neglecting selective mining units. The Milawa algorithm 

(2012) is a heuristic approach from Whittle Software that defines schedules by 

combining benches inside predefined pushbacks. The method is efficient and 

practical but has the drawbacks of working within aggregates. 

2.2 Mixed-Integer Programming – A Different Class of Methods 

A different class of methods, called mixed-integer programming (MIP), allows for 

the definition of optimal mine production schedules within their ultimate pit limits 

simultaneously. The actually most efficient software for conventional mine 

planning is the Blasor owned and developed by BHP Billiton. The algorithm is 

proprietary with details not published, but the software is capable of dealing with 

deposits containing billions of blocks for multiple pits, multiple destinations, 

blending operations, with no prior definition of cutoffs or ultimate pit limits. For 
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doing so, blocks are aggregated by a proprietary fuzzy clustering algorithm 

according to their location in space and respecting slope constraints. Each 

aggregation has bins that are allowed to be mined independently. The schedule 

optimization is performed over aggregations by a MIP formulation (Stone et al., 

2007). Other extensions of Blasor include in-pit dumping optimization (Zuckrberg 

et al., 2007) and the Blondor optimizer for a bauxite mine (Zuckrberg et al., 

2010). Other conventional approaches are Johnson (1968), Dagdelen and 

Johnson (1986), Akaike and Dagdelen (1999), Dagdelen (2007), Bley et al. 

(2009) and Bley et al. (2012). 

Other approaches propose strategies to reduce the number of binary variables in 

MIP formulations, thus improving processing times. Ramazan and 

Dimitrakopoulos (20041) propose defining waste blocks as continuous variables, 

considering that negative valued blocks will be chosen to be mined by the 

optimization process only when overlying profitable material; therefore, slope 

constraints and the maximizing profit nature of the objective function guarantee 

that waste blocks will be completely mined in those cases, assuming integer 

value 1  even though variables are defined as continuous. Caccetta and Hill 

(2003) presented an MIP formulation for mine schedule optimization and studied 

the intricacies of its linear relaxation in order to propose a specific branch and cut 

strategy (Wolsey, 1998). Bley et al. (2010) strengthened this formulation by 
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considering that deeper blocks cannot be included in earlier stages of 

development, according to upper limits in production constraints. 

2.3 Heuristic Approaches 

Among heuristic methods available, Tolwinski and Underwood (1996) proposed 

an approach combining dynamic programming (guided search) and specific 

heuristics (lookahead values and templates). The scheduling is modelled as a 

series of mine states, where, from one state to the next, one block is mined until 

reaching the final pit. The proposed method limits the size of the problem by 

restricting the state space, allowing for scheduling of average size mines. 

Although the presented results are better than other given solutions, it was not 

assessed how far they are to the unknown optimal one. Other heuristic approach 

based on a genetic algorithm can be found in Denby and Schofield (1995). 

2.4 Drawbacks of Deterministic Methods 

The conventional mine production scheduling methods presented are based on 

the strong assumption that all parameters are known with 100% certainty; 

however, assuming perfect knowledge of the required inputs misleads 

optimization processes, as the life-of-mine production schedule definition 

requires analysing joint distributions of metal content over blocks grouped at 

different locations over time. Conventional methods ignore that production 

scheduling is a “non-linear transfer function”, where averaged grades used as 
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input do not provide schedules with production controlled in average, thus with 

consequences to all project indicators, including NPV expectations. Geological 

uncertainty must be addressed in order to come up with truly optimal mining 

decisions. Ravenscroft (1992) discusses the shortfalls of using confidence 

intervals estimation to access geological uncertainty and concluded that 

conditional simulations are preferred for such a task, since spatial correlations 

are respected. Dowd (1994) discusses in depth the risk concept in mineral 

projects, reinforcing the importance of stochastic simulations as input for proper 

risk analysis. Dimitrakopoulos et al. (2002) discusses these aspects and presents 

consequences of considering an estimated orebody model as input for a “non-

linear transfer function” (mine scheduling) in an open pit case study. The study 

assessed the risks involved in mining decisions taken with the use of 

conventional methods, replacing the estimated model used as input by 

conditionally simulated models. Project indicators, such as the DCF, are then 

recalculated for each scenario, as presented in Figure 1. 
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Figure 1: Case study DCF risk profile, Dimitrakopoulos et al. (2002). 

Figure 1 suggests that there is considerable risk in not meeting expectations in 

terms of DCF in the third year, which could not be forecasted without a proper 

risk analysis. Dimitrakopoulos et al. (2007) proposes a maximum upside 

potential/minimum downside risk approach, which takes the outputs from each 

schedule generated, applied to each simulation, and compares them with a point 

of reference such as the minimum acceptable return. As a result, one of the 

schedules is selected from those tested, but not necessarily the optimal one. 

Focus is next given to stochastic techniques for life-of-mine production 

scheduling. 

2.5 Stochastic Mine Planning Optimization 

Godoy (2003) developed a long term scheduling approach based on simulated 

annealing (Kirkpatrick et al., 1983; Geman and Geman, 1984), where multiple 
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schedules were also used to define the probability of each block being assigned 

to a specific period (transition probability). The objective function 
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temperature T  and depends on the level of deterioration of the actual solution:  

 












 




otherwise
T

OO
OOif

acceptob newold

oldnew

exp

1
Pr  

Higher temperatures and smaller differences between actual and perturbed 

solutions increase the probability of accepting an unfavorable perturbation. The 

process should start with higher temperatures to allow the method to explore 



15 
 

 

different parts of the solution space (different feasible mine schedules). 

Temperatures should decrease within time, allowing less deterioration, that is, 

with more focus on improvements. Simulated annealing for mine scheduling is 

further explored in Leite and Dimitrakopoulos (2007) with sensitivity analysis over 

the set of 25 scenarios considered at a copper deposit and in Albor and 

Dimitrakopoulos (2009) finding deeper pit limits with sensitivity analysis over the 

number of scenarios considered for the same copper deposit. Both case studies 

have shown improve in NPV expectations higher than 26% if compared to results 

provided by deterministic methods, which shows that the stochastic solutions 

have higher value, providing schedules with lower risk and higher reward 

simultaneously. The approach is flexible to be extended to other contexts and 

simulated models are considered jointly during the optimization process. Its main 

drawbacks are the inability to control the distribution of risk over time, the 

demanding work to define schedules for each simulated model and the setup of 

abstract parameters. 

Dimitrakopoulos and Ramazan (2004) introduce the concept of orebody risk 

discounting, which postpones riskier blocks to later periods of development. A 

major drawback of this formulation, and other probabilistic based approaches 

(Ramazan and Dimitrakopoulos, 20042; Dimitrakopoulos and Grieco, 2009),  is 

the prior assignment of risk probabilities for each block, discarding grades over 
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simulations and neglecting that uncertainty has to be evaluated jointly, as groups 

of blocks in mining periods, and not locally, block-by-block. 

Stochastic mathematical programming (Dantzig, 1955; Beale, 1955; Vajda, 1972; 

Kolbin, 1977; Birge, 1982; Birge, 1997; Birge and Louveaux, 1997; Sen and 

Higle, 1999) is a modelling framework with some unknown parameters that 

allows for optimization considering possible scenarios simultaneously. Dantzig 

(1955) introduced the concept of activities being divided into multiple stages 

(multistage stochastic programming). In the context of mine production 

scheduling, Ramazan and Dimitrakopoulos (2012) implements a two-stage 

stochastic integer programming model, which simultaneously maximizes the 

yearly discounted profit of the operation and minimizes the risks of not achieving 

production targets; the formulation is detailed in the next section. Leite and 

Dimitrakopoulos (2010) presents a case study based on the same formulation, 

but considering no control over grade and metal productions and no stockpiles. 

Results showed an expected NPV 29% higher, if compared with a conventional 

approach fixing the same ultimate pit limits for both. Benndorf and 

Dimitrakopoulos (2010) shows an application at an iron ore deposit controlling 

deviations in quality targets over multiple elements and considering penalties for 

mining configurations that are not smoothed. Menabde et al. (2007) implements 

a stochastic version of Blasor including a variable cut-off grade approach and 
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considering aggregation of blocks in panels. Jewbali (2006; 2010) integrates long 

and short-term mine planning, making use of simulated grade control data. Albor 

and Dimitrakopoulos (2009) combines SIP with a pushback design approach. 

Using an estimated model, a set of nested pits is generated and intermediate pits 

are grouped using maximum NPV criteria, depending on the number of 

pushbacks desired. Finally, SIP is applied following different pushback designs, 

comparing results and defining the best pushback strategy. Although the 

approach allows going beyond traditional final pit limits, with 17% of extra ore 

production, it requires repetitive executions of the SIP procedure, with 

unreasonable processing time for some cases. Lamghari and Dimitrakopoulos 

(2012) presented an approach based on Tabu Search that maximizes NPV and 

minimizes deviations in ore and metal production targets, considering 

diversification strategies based on the search history and a Variable 

Neighbourhood Search method. Results are close to the optimal SIP solution but 

executing dozens of times faster. Boland et al. (2008) proposed a multistage 

stochastic programming approach considering scenario dependency for 

processing and mining decisions, where different schedules can be defined 

according to grouping criteria that depends on the “similarity” among simulated 

models. Its main drawback is the non-realistic assumption that one of the 
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provided realizations represents the truth, allowing for different mining decisions 

depending on the model. 

For completeness regarding stochastic pit space discretization, something which 

can facilitate the scheduling of large deposits, further work using the maximum 

flow framework has been developed considering its ability to cope with real sized 

instances of mineral deposits. Asad and Dimitrakopoulos (2012) proposed a 

parametric maximum flow algorithm based on previous work (Meagher et al., 

2010) that considers geological uncertainty through the use of stochastic 

simulations, and market uncertainties through a real options approach, using 

orebody model realizations with different discounting scenarios (Dimitrakopoulos 

and Abdel Sabour, 2007).  

Recent attempts have been made to associate more parts of the mining chain, 

incorporating the uncertainty in metal content. Montiel and Dimitrakopoulos 

(2012) proposes a heuristic approach for mine production scheduling considering 

multiple material types, dynamic decision over multiple destinations, stockpiles 

and achieving requirements in terms of processing additives, and Goodfellow 

and Dimitrakopoulos (2012) does mine supply chain optimization controlling 

production deviations in mining complexes with multiple mines and processing 

destinations. In the deterministic context, Whittle Software released its 

Simultaneous Optimization module (2012) that considers the optimization of the 
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mine sequence, cut-off grades, blending and stockpiling simultaneously, showing 

a case study with 25% of improvement in NPV expectations, if compared to the 

same project running optimization procedures sequentially. 

2.6 Modelling with Stochastic Integer Programming 

The two-stage stochastic integer programming model from Ramazan and 

Dimitrakopoulos (2012) provides a general formulation for mine production 

scheduling optimization, controlling ore tonnage, grade and metal production 

targets with the cost of risk included in the objective function (1). Such a risk is 

quantified by the excess t
sud  and deficient t

sld  amounts in ore production, grade 

and metal production, over each scenario s , penalizing the objective function 

( 4Part ) according to pre-defined costs (  t
l

t
u CC , ), which include orebody risk 

discounting rate varying according to period t . The 1Part  of the objective 

function accounts for the expected NPV obtained by mining the fractions t
ib  of 

blocks i  over period t  and processing the blocks during the same period. 2Part  

compensates for the expected NPV loss from fractions t
jw  of blocks j  mined 

over the same period but sent to the stockpile, with respective cost t
jMC . 3Part  

stands for the expected NPV obtained from the amounts of ore t
sk  processed 

from the stockpile during period t , tSV  being the profit per tonne generated. P  

stands for the number of periods; N  the total number of blocks; U  the number of 

blocks considered for stockpiling; and M  the number of simulated models. 
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Deviations in the objective function are calculated by processing (2), grade 

blending (3) and metal production (4) constraints. siO , siG  and siQ  stand for ore 

tonnage, grade and metal tonnage, respectively, in block i  and model s ; tarO , 

tarG  and tarQ  stand for the ore production, grade and metal production targets, 

respectively; and tQST )(  is the percentage of metal content at average grade 

GST  in the stockpile. 
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An additional set of constraints define the quantity of ore at the stockpile at the 

end of each period, not exceeding capacity and guaranteeing that blocks are 

mined before they are stockpiled. Slope constraints guarantee that overlying 

blocks (predecessors) are mined before underlying blocks (successors), 

according to a given slope angle; reserve constraints guarantee that blocks are 

fully mined and not more than once; and mining capacity constraints forces the 

total production (ore + waste) to be in between a given range. In order to improve 

performance, some strategies are considered: binary variables associated to 

waste blocks are treated as continuous; second stage variables are first 

converted into hard constraints and results are fed back as initial solution; 

scheduling is divided into two phases for the case study. Results for the gold 

deposit studied showed a 10% higher expected NPV given by the stochastic 

solution.  

2.7 Surface Based Mine Production Scheduling 

An alternative idea to the previous SIP formulations is based on the concept of 

mining surfaces. A mine schedule can be seen as a set of surfaces in space that 

divides the orebody into parts to be mined during different periods. Approaches 
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based on surfaces facilitate slope management, improving efficiency in solving 

SIP formulations. 

Goodwin et al. (2005) introduced a new mine state concept in the production 

scheduling context by incorporating practical mine planning features in order to 

improve computational efficiency. Mine state was defined as a set of elevations, 

one for each  yx,  coordinate of a three-dimensional orebody model, 

representing the pit depth (that is, the distance from a fixed higher elevation) at a 

given mining period. The evolution from one period to the next is given by 

downward vertical increments, updating the mine state  kzij  according to 

decisions  kuij  to mine or not mine the area ij  ( ji, : block indices) at time k . 

The state model is defined by: 

     kcukzkz ijijij 1 ,   1k  

  yxij NjNiz ,...,1,,...,1,01  ,                              (5) 

where yx NN ,  are the number of blocks in x  and y  dimensions, respectively, 

and c  is the constant depth associated to each mining action. Note that having 

only positive downward increments guarantees the traditional reserve 

constraints. At each time k , the number of mining states allowed to change is 

limited by the mining capacity. Slope constraints (6) are controlled over each 

mine state, comparing only adjacent elevations. This is different than previous 

approaches that require one constraint for each combination (two-by-two) of 
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blocks and their predecessors, which is an approximation that changes 

complexity (number of predecessors) depending on slope angles. 

    hkzkz ij ln ,   1k  

for 1 il  and 1 jn ,                                  (6) 

where h  is a fixed difference in elevation calculated from the given slope angle. 

Note that this height should be different at least for states adjacent diagonally, 

but constraints (6) are reproduced here as in the original manuscript. The authors 

do not present the remaining constraints involved in the formulation. The 

objective function is modelled as: 

    
  

T

k

N

i

N

j
ijijijk

x j

kukzVdMax
1 1 1

,                                (7) 

where   kzV ijij  and kd  stand for the economic value given the mining state and 

its time discounting, respectively, and T  is the planning horizon. The authors 

state the non-convexity of the value function and consider the fictitious linear 

aspect of the third dimension due to the discrete nature of the input model. No 

further details are reported and understanding how block values are associated 

with mining states in the formulation in unclear. Uncertainty is not taken into 

account. Considering the complexity of the formulation, mine scheduling is 

performed using the receding horizon control framework, which may allow for a 

long-term view of the solution space by grouping mining periods. 
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Chapter 3 - SURFACE CONSTRAINED MINE PRODUCTION 

SCHEDULING WITH UNCERTAIN METAL AVAILABLE 

 

3.1 Introduction 

Mineral projects aim to produce metal available in the Earth’s subsurface to meet 

the needs of society and its development through the sustainable utilization of 

mineral resources while generating revenue. The longstanding conventional 

approach of using exploration drilling data to estimate the attributes of interest 

(grade, material types, density, etc.) in a mineral deposit does not capture the 

intrinsic geological variability and uncertainty (Dimitrakopoulos et al, 2002; Dowd, 

1994). Ravenscroft (1992) concludes that conditional stochastic simulations are 

preferred for such a task, since spatial correlations are respected. Conventional 

optimization formulations used to optimize mine production schedules and 

assess discounted cash flows over production years have been shown to be 

misleading (Godoy, 2003), causing possibly incorrect assesses of production 

forecasts, which is reviewed in Dimitrakopoulos (2011).  

Two stochastic optimization approaches for long-term mine production 

scheduling have been developed. The simulated annealing framework was 

introduced by Godoy and Dimitrakopoulos (2004) and is further explored in Leite 

and Dimitrakopoulos (2007) and Albor and Dimitrakopoulos (2009). It has been 
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expanded to control production deviations in mining complexes with multiple 

mines and processing destinations (Goodfellow and Dimitrakopoulos, 2012). 

Stochastic integer programming with recourse is introduced in Ramazan and 

Dimitrakopoulos (2005, 2012) to maximize total discounted cash flows, while 

minimizing deviations from production targets (ore tonnage, grade and metal), as 

well as deferring risk to latter production periods. The framework considers 

stockpiles and allows controlling grades, ore and metal productions. Leite and 

Dimitrakopoulos (2010) presents a case study based on the same formulation, 

but considering no control over grade and metal productions and no stockpiles. 

Notable variations of the SIP framework includes long- and short-term mine 

production scheduling based on simulated future grade control data (Jewbali, 

2006; 2010).  Benndorf and Dimitrakopoulos (2010) shows an application 

controlling deviations in quality targets over multiple elements and considering 

penalties for mining configurations that are not smoothed. Albor and 

Dimitrakopoulos (2010) use the SIP formulation for pushback design, 

demonstrating that stochastically generated pit limits are larger than the 

corresponding conventional ones. Menabde et al. (2007) proposes an alternate 

formulation that uses a variable cutoff grade and relies on aggregations of blocks 

to ensure the problem is computationally tractable. Boland et al. (2008) propose 

a multi-stage stochastic programming approach that considers both processing 
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and mining decisions. To address the computational and size limits of SIP mine 

scheduling formulations, Lamghari and Dimitrakopoulos (2012) introduce tabu 

search and variable neighborhood search to replace the need to solve SIP 

formulations with conventional mathematical programming solvers, assisting 

computationally efficient solutions. Regarding stochastic pit space discretization, 

something which can facilitate the scheduling of large deposits, Asad and 

Dimitrakopoulos (2012) proposed a parametric maximum flow algorithm based 

on previous work (Meagher et al., 2010) that considers geological uncertainty 

through the use of stochastic simulations, and market uncertainties through a 

real options approach. 

The well-known drawback of any mixed-integer programming based approach, in 

the mine scheduling context, is computational (Hustrulid and Kuchta, 2006). As 

the number of binary variables increases with the number of mining blocks being 

scheduled, the amount of time required to generate an optimal solution often 

becomes impractical. Ramazan and Dimitrakopoulos (20041) proposes defining 

waste blocks as continuous variables, considering that negative valued blocks 

will be chosen to be mined by the optimization process only when overlying 

profitable material. 

An alternative approach to past SIP developments is based on surfaces that 

facilitate a divide and conquer approach for scheduling. Related to this is the 
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work of Goodwin et al. (2005), who proposes a new “mine state” concept for 

open pit production scheduling. A mine state is defined as a set of elevations, 

one for each   coordinate of a three-dimensional orebody model, which are used 

to represent the pit depth (the distance from a fixed higher elevation) at a given 

mining period. The evolution from one period to the next is given by downward 

vertical increments, updating the mine state each time. Slope constraints are 

controlled over each mine state, comparing only adjacent elevations. Each state 

is always below previous ones, as only positive increments are allowed. Their 

formulation has a non-convex objective function, but no further details are 

reported. In addition, uncertainty in input parameters is not accounted for. The 

mine state concept is the same as the surface concept used herein and is 

presented in the subsequent sections, with the difference that surfaces carry 

exact elevations in space, instead of measures of depth from a fixed elevation.  

The present paper builds upon the previous work by proposing a SIP formulation 

to address the optimization of mine production scheduling, defining constraints 

over surfaces so as to reduce the number of constraints in the mathematical 

formulation, while uncertainty and risk are controlled through additional hard 

constraints. It is important to note that, in the proposed formulation, the 

management of slope constraints is simpler and more general. In the following 

sections, the concepts and stochastic scheduling formulation based on surfaces 



28 
 

 

are detailed. Following this, a sequential implementation of the proposed method 

is presented and tested so as to elucidate performance and related intricacies. 

An application at a copper deposit demonstrates the method’s capability to deal 

with relatively large deposits. Conclusions follow. 

3.2 A Stochastic Programming Formulation Based on Surfaces 

3.2.1 Surfaces and Related Concepts 

Surface relations used herein are based on the fact that mining blocks describing 

a deposit are not independently distributed in space and can be grouped into 

vertical columns. More specifically, surfaces are defined as sets of elevations in 

which mining periods in the production schedule are divided, similarly to Goodwin 

et al. (2005). Each column of blocks (fixed xand y coordinates) can be partitioned 

by T  surfaces into 1T  groups of blocks, which then becomes the T  mining 

periods in addition to the blocks that are not extracted. For each surface (or 

period) T , cell c  is defined by a fixed pair of coordinates  yx, , and each cell c  

has an elevation tce ,  associated with period t . Variables tce ,  are continuous and 

assume values from the origin up to the highest elevation allowed in the orebody 

model. Using the concept of surfaces, slope angle constraints can be controlled 

over surfaces, rather than blocks. This is a trade-off, where new variables tce ,  are 

included but fewer constraints are required, as shown in subsequent sections. 
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Typical approaches for production scheduling in terms of mathematical 

programming (Hustrulid and Kuchta, 2006) are based on binary variables tix , , 

where 1, tix , if block i  is mined in period t , and 0 otherwise. Here, the notation 

of tix ,  is modified to tc
zx , , where each i  corresponds to a pair  zc, , for 

correlating tce ,  (elevation; continuous) with tc
zx ,  (block; binary). The tc

zx ,  variable 

assumes the value 1  only if block  zc,  is the deepest block being mined in 

period t  and in column c ; otherwise, the tc
zx ,  variable is zero.  

Block attributes such as total/ore/metal tonnages are accumulated starting from 

the topography down to the last block over each column, with cumulative values 

being stored at each level; attributes for single blocks are discarded for the 

optimization process, which allows quick operations between surfaces by taking 

differences. A key aspect of this approach is the need to associate blocks with 

surface cells and is performed by comparing their elevations in space (Figure 2): 

a block  zc,  will be considered the last block mined over c  in a given period t  if 

its centroid elevation c
zE  (in grey) lies between tce ,  and ze tc , , where z  is the 

block dimension in z . Figure 3 shows, in a sectional view, cells representing the 

end of first and second periods, with blocks valued accordingly. Note that for 

each column (given x  and y ) and each period, 1, z
tc

zx , which is a strong 

constraint given by the approach proposed herein that reduces processing time. 
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Figure 2: Example of a cross-section of blocks being represented by cells. 

 

Figure 3: Assigning a period to a block according to surface elevations. 

3.2.2 Notation 

The following notation is used herein. 

3.2.2.1 Indices 

1.  M : number of cells in each surface; where yxM   represents the number 

of mining blocks in x  and y  dimensions. 

2. c : cell index corresponding to each  yx,  block/cell location, Mc ,,1 . 

3. Z : number of levels in the orebody model. 

4. z : level index, Zz ,,1 . 

5. T : number of periods over which the orebody is being scheduled and also 

defines the number of surfaces considered. 
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6. t : period index, Tt ,,1 . 

7. S : number of simulated orebody models considered. 

8. s : simulation index, Ss ,,1 . 

3.2.2.2 Constants and sets 

9. z
cE : elevation of the centroid for a given block  zc, . 

10. xH : maximum difference in elevation for adjacent cells in contact laterally in 

the x direction, calculated by  tan xH x , where x  is the block size in x  

and   is the maximum slope angle. 

11. yH : maximum difference in elevation for adjacent cells in contact laterally in 

the y  direction, calculated by  tan yHy , where y  is the block size in 

y . 

12. dH : maximum difference in elevation for adjacent cells in contact diagonally, 

calculated by      tan22  yxHd . 

13. cX , cY  and cD : equivalent to xH , yH  and dH  concept, the sets of adjacent 

cells, laterally in x , in y and diagonally, for a given cell c , respectively. 

14. z
cT : cumulative tonnage of block  zc,  and all blocks above it (scenario 

independent). 

15. z
scO , : cumulative ore tonnage of block  zc,  and all blocks above it in scenario 

s . 
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3.2.2.3 Parameters 

16. tT  and tT : lower and upper limits, respectively, in total tonnage to be 

extracted during period t . 

17. R
tO and R

tO : lower and upper limits, respectively, on ore tonnage to be 

processed over period t , where R is used to denote “risk”. 

18. A
tO  and A

tO : lower and upper limits, respectively, on expected ore tonnage to 

be processed over period t , where A  is used to denote “average”. 

19. z
stcV ,, : cumulative discounted economic value of block  zc,  and all blocks 

above it in scenario s and period t . 

3.2.2.4 Variables 

20. tce , : scenario-independent continuos variables associated with each cell c  for 

each period t , representing cell elevations. 

21. z
tcx , : binary variable that assumes 1  if block  zc,  is the last block being 

mined in period t  over c , and  otherwise. ),(,00, zcxzc  . 

3.2.3 Mathematical Model 

3.2.3.1 Objective function 

The proposed objective function in Equation (1) maximizes the expected net 

present value from mining and processing selected blocks over all considered 

mine production periods. Recall that all values are cumulative and z
tc

z
tc xx 1,,   is 
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associated with the difference between the surfaces, which results in 0, 1 or 1 , 

depending on location  zc,  and period t . 
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3.2.3.2 Constraints 

The constraints presented in Equations (2) to (8) are scenario-independent, while 

constraints in Equations (9) and (10) are scenario-dependent stochastic 

constraints. 

Surface constraints: the following set of constraints (Equation (2)) guarantee that 

each surface t  has, at maximum, the same elevation as surface 1t , which is 

used to avoid crossing surfaces and blocks being mined more than once. 0,ce  are 

constant elevations defined by the actual topography of the deposit. 

0,1,  tctc ee    ;,,1 Mc   Tt ,,2          2  

Slope constraints: the maximum surface slope angle is guaranteed herein by 

Equations (3) to (5). Each cell elevation is compared to the elevation of the 8  

adjacent cells, which therefore represents a set of Tnynx 8  continuous 

constraints. Note that adjacent cells are compared twice, guaranteeing upward 

and downward slopes. The number of slope constraints controlled by surface 

relations does not depend on slope angles and require fewer constraints than 

conventional formulations, as follows: 

xtxtc Hee  ,,   ;,,1 Mc    ;,,1 Tt       cXx      3  
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ytytc Hee  ,,  ;,,1 Mc    ;,,1 Tt        cYy               4  

dtdtc Hee  ,,            ;,,1 Mc    ;,,1 Tt        cDd               5  

Link constraints: mining blocks and surfaces are linked in the formulation by 

comparing the elevation of each block centroid with the elevation of each 

surface. Variables z
tcx ,  will assume value 1 only for block centroids that are in the 

same elevation or exactly above the correspondent surface (index t ). Constraints 

(6) guarantee this link, where z  is the block height, and constraints (7) 

guarantee that there is only one block defining the end of each period t  over 

each column c  of blocks z , 

  zexE tc

Z

z

z
tc

z
c  
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Mining constraints: constraints (8) ensure ore and waste production requirements 

are respected during each mining period: 

  t
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Variability constraints: constraints (9) guarantee that processed ore tonnages are 

not outside lower and upper bounds, R
tO  and R

tO . These hard constraints 

guarantee that deviations from production targets are within required 

specifications.  

  R
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Target constraints: constraints (10) guarantee that expected processed ore 

tonnages are not outside lower and upper bounds, A
tO  and A

tO , keeping results 

close to defined targets. The absence of such constraints implies in results closer 

to the upper bound defined in (9). Other constraints over other additive variables 

can be modelled using the same approach. 
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The variables involved in the formulation are defined as following. Note that 

elevations are continuous and can be initially constrained by the limits of the 

orebody models. 

tce ,    ;,,1 Mc   Tt ,,1    11  

 1,0, 
z
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3.3 Sequential Implementation 

This section proposes a sequential implementation of the formulation, where 

periods are included in the optimization process in a stepwise fashion. Once the 

method returns its best solution for a mining schedule of t  periods, a new period 

1t  is added to the optimization process. The proposed formulation is executed 

successive times and results for one optimization process are used as limiting 

assumptions for next processes. The main steps of the sequential 

implementation are as follows:  
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1. Take the actual topography of the deposit as a top limiting surface; no other 

surface can extend above this limit. 

2. Similarly, define a bottom limit by eliminating external waste volumes, 

vertically and horizontally, according to slope angles, but guaranteeing that 

every block with some probability of being ore is inside this limit. No surface in 

any period can go outside such limits and blocks located outside are not 

considered in optimization processes. 

3. Find an initial solution for period 1 with successive runs of the mathematical 

formulation proposed in Section 3.2, given pertinent considerations (please 

see Section 3.3.2). 

4. Iteratively improve the initial solution, using the same formulation with other 

pertinent considerations (Section 3.3.3). 

5. Find an initial solution for periods 1 and 2 , with similar considerations of step 

3 (Section 3.3.4). 

6. Improve the solution considering all included periods jointly, extending 

considerations of step 4 (Section 3.3.4). 

7. Loop over steps 5 and 6, including new periods, until there is no more 

profitable material available (Section 3.3.4). 
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8. Freeze all periods except by the last and run the last optimization process, 

based on the same formulation, looking for extra deeper blocks to be included 

(Section 3.3.4). 

3.3.1 Efficiency Aspects 

The formulation proposed in Section 3.2 has a specific characteristic that can be 

exploited for reasons of computational efficiency. More specifically, integer 

programming methods require solving the linear relaxation of the formulation, 

when unavoidable situations like the ones presented in Figure 4 occur. The sum 

over all columns, for each period, is always equal to 1 , as guaranteed by 

constraints (7). 

 

Figure 4: Linear relaxation of binary variables. 

Recall that the binary variables in the formulation are related to surface 

elevations by constraints (6) and (7). These constraints guarantee that the 

weighted average of the block elevations fall just above the respective cell 

elevations. For example, in the third column of mining blocks in Figure 4, 
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considering the second mining period, there are two blocks with fractional values 

assigned. One block is assigned with value 6.0 and located at elevation 275m. 

The second block has value 4.0 and elevation 205m. The weighted average is 

calculated by: 2472054.02756.0  m. The surface for the second period in 

the same column is located at elevation 240m. Hence, constraint (6) is respected 

in the linear relaxation, as it must be, considering that the weighted average is in 

between 240 m and 250 m. Figure 4 presents just an illustrative example to 

facilitate understanding, but any combination of fractional values for variables z
tcx ,  

that respect (6) and (7) will be part of a valid solution. However, fractional values 

must exist both above and below the cell elevation, otherwise the weighted 

average of block elevations will not comply with constraints (6). If other surfaces 

are used to split the deposit into parts and blocks are fixed to zero in one side of 

the surface, there will be a considerable reduction in the number of possible 

combinations of fractional solutions, which consequently reduces processing 

time. These limiting surfaces are the basis for the sequential approach proposed 

herein and will be called as top or bottom limits. 

3.3.2 Engineering Aspects 

The sequential implementation of the proposed method considers some 

engineering aspects of a mine’s production schedule to improve efficiency of the 

optimization processes involved. The first objective of the sequential 
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implementation is to find the most profitable available limits when mining a single 

period. The original topography serves as the initial upper limit for this single 

period, while the bottom limits may be defined, as pre-processing step, such as 

to reduce the number of blocks involved in each optimization process; more 

specifically, the implementation considers the following. 

3.3.2.1 Bench limits 

Mining operations have practical limits on minimum/maximum benches (levels of 

the orebody models) to be mined over a production year, productivity and 

operational constraints related to long-term plans and mining capacities. For this 

reason, bench limits are established for each period to define the maximum 

meaningful depth for a surface. The example depicted in Figure 5 to 9 is a 

simplified illustration used to help explaining the sequential steps. Assuming not 

more than 3 benches can be mined per period, the mining surfaces of periods 1 

and 2  are not permitted to mine below the sixth and third benches, respectively, 

while the surface of the third period is left unconstrained (free). Note that, in 

Figure 5, the schedule deals only with period 1, therefore bench limits for periods 

2  and 3 are not considered at this step. 

3.3.2.2 Maximum mining depth 

While the bench limit does not allow mining below a fixed elevation, the 

maximum mining depth parameter defines the maximum distance that each cell 
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of the surface can move downwards, creating a bottom limit parallel to the top 

(please see arrows in Figure 5). This parameter is related to the practical 

assumption that it is not possible to mine more than a given depth in a fixed 

amount of time, depending on fleet, productivities and other mining 

considerations. 

3.3.2.3 Fractional periods 

For further efficiency improvements, the pit space is discretized dynamically. 

Instead of running one optimization process for the entire first period at once, 

including all accessible blocks in the optimization process, the approach runs the 

formulation for fractions of the period (fractional periods) sequentially, rescaling 

full period targets and limits, until achieving targets for the entire period. For 

example, consider all mining targets and limits for quarters of production; the 

algorithm finds four consecutive smaller schedules, always using the previous 

result as an upper limit for the next; the bottom of these four quarters is 

considered a surface for the entire mining period. Figure 5 illustrates the 

schedule of two fractional periods of production. The final objective of these 

fractional steps is to find one feasible solution that will be later improved (Section 

3.3.3). 

The combination of these strategies for defining bottom limits to each 

optimization process (bench limits, maximum depth and fractional periods) 
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improves efficiency, as decisions are taken locally and sequentially. Figure 5 

shows an example of two fractional periods considering maximum depth of 20  

meters for each. The maximum depth is represented by arrows for each column 

until reaching the limit 20  meters below the actual surface. The bottom of the last 

fractional period is considered the surface representing the first period of the 

schedule. Note that, for clarification purposes, only mining blocks and limits are 

presented in the figure, however all operations are related to cells elevations, 

which are continuous variables and are not required to be at the bottom elevation 

of the blocks. 

 

Figure 5: Two sequential fractional period optimizations within limits. 
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3.3.3 Schedule Improvement Steps 

In order to assess potential further computational improvements, a local search 

strategy is performed (Aarts and Lenstra, 2003). A distance range is considered 

above and below the first period surface found, defining new top and bottom 

limits, and the optimization is executed again. The algorithm loops over this 

process until no other better solution (Equation (1)) is found. In this step, the 

surface is allowed to move inside given ranges, and blocks are combined 

accordingly. Bench limits are still respected, but maximum depth limits are not 

defined for entire mining periods, being used only as a tool for improving 

efficiency in finding an initial solution. Figure 6 illustrates one loop over this step 

with a range of 10  meters (dashed lines) over the surface of period 1 (continuous 

line), where elevations are changed, including two blocks and excluding the other 

two. Recall that blocks are assigned to periods as a consequence of surface 

elevations. 
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Figure 6: Tolerance range (one loop) applied to results for period 1. 

3.3.4 Multiple-period Optimization 

With the best solution (Equation (1)) for period 1, after the last step of Section 

3.3.3, period 2  is then considered. Using the surface for period 1 as top limit, the 

same steps presented in Figure 5 are repeated for period 2 . Figure 7 shows 

solutions being defined sequentially, first for 5.1  periods and then for 2  periods. 

The result will be a feasible initial solution for the surface of period 2 . 

The schedule found separately for periods 1 and 2  in previous steps are then 

combined into a joint optimization for two periods. The distance range defined in 

the previous section is now considered simultaneously to both periods, allowing 

combined adjustments to increase the expected net present value (NPV) of the 

project, as presented in Figure 8, where two blocks swap periods, allowing the 
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inclusion of a new block in the schedule. The steps presented are repeated until 

the end of the schedule. 

 

Figure 7: Optimization process achieving targets for the two first periods. 

 

Figure 8: Two-period joint optimization, applying tolerance ranges to both. 
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3.3.5 Finding Deeper Pit Limits 

In the last step, a new search is performed beyond the limits of the last period to 

explore if additional mining blocks can be included in the final schedule. This step 

is performed by fixing all previous periods and setting the surface of the last 

mining period as the top limit for running again the last optimization process, that 

is, new blocks can be included but not excluded. Note that the proposed 

approach does not require any given final pit surface, being all remaining blocks 

of the model available to be included in the last period of the production 

schedule. At this point of the scheduling process, fewer blocks are available in 

between the surface of the last period and the bottom limit defined in Step 2, 

allowing for an optimization without the use of bench and maximum depth limits. 

The top of Figure 9 shows the resulting 3-period schedule, after following the 

same steps presented in Figures 7 and 8; the bottom shows the inclusion of one 

extra block, resultant from searching the simulated orebody models deeper. After 

this step, the optimization process terminates. 
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Figure 9: Final schedule including the third period and looking deeper. 

The sequential implementation of the SIP formulation in Section 3.2, as 

discussed above, raises the questions of optimality of the related production 

sequence. This topic is addressed and explored next through an application. 

3.4 Testing the Formulation and the Sequential Implementation 

This section presents the application of the mathematical formulation introduced 

before. Subsequently, Case 1 introduces the use of fractional periods and 

maximum depth limits; Case 2 establishes bench limits; Case 3 tests the 

sensitivity of the maximum depth parameter; lastly, Case 4 explores variability 

constraints. 

The small copper deposit simulated in Leite (2008) is considered here for testing 

purposes, allowing comparisons in terms of performance and sensitivity 
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regarding input parameters. The orebody model consists of 9953  blocks of 

102020  m³ size and simulated using the direct block simulation method 

(Godoy, 2003; Boucher and Dimitrakopoulos, 2009). The parameters considered 

for scheduling are given in Table 1. The annual ore production variability is 

controlled with a set of hard constraints defined experimentally and assuming a 

life of mine of eight years, as known from previous studies (Albor and 

Dimitrakopoulos, 2009; 2010), from where parameters were taken. 

Copper price, $/lb 1.9 

Selling cost, $/lb 0.4 

Mining cost, $/t 1.0 

Processing cost, $/t 9.0 

Recovery, % 90 

Discount rate, % 10 

Mining capacity, Mt/year 28 

Expected ore production, Mt/year 7.5 

Slope angle, degrees 45 

Cut-off grade, % 0.3 

Table 1: Economic and technical parameters for testing 

Graphs in the next sub-sections report the average forecasts of ore, waste, metal 

and cumulative cash flows along with the corresponding deciles 10P , 50P  and 



48 
 

 

90P . Results are based on 15  simulated realizations of the deposit, while the 

production forecasts reported and their risk assessment are based on 20  

simulations. 

3.4.1 Scheduling with the “Full SIP” 

The life-of-mine production schedule results for the “Full SIP” are summarized in 

Figures 10 and 11. On average, ore production is close to the specified ore 

production target of 5.7 Mt per year. The waste risk profile presents low variability 

through all scheduled periods. Metal production starts at higher levels at the 

beginning of the life of mine, remains stable from period 2  to period 6 , and 

decreases in the end, as expected. Figure 11 presents the cumulative NPV for 

this project showing a 90% probability of achieving at least 254 million dollars 

with expected NPV of $ 277 million. Figure 12 shows, in a vertical section, the 

physical schedule obtained, presenting a shape relatively easy to be 

operationally designed. 

 

Figure 10: Risk profile for ore and waste tonnages for “Full SIP” solution. 
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Figure 11: Risk profile for metal tonnages and NPV for “Full SIP” solution. 

 

Figure 12: East-West deepest vertical section (N10290) for “Full SIP”. 

3.4.2 Sequential Implementation 

3.4.2.1 Case 1 

In Case 1 no bench limits are imposed and the maximum mining depth is defined 

as 20m for each fractional period. The resulting schedule is identical to the 

schedule generated for the “Full SIP” case, as it can be observed in Figures 13 to 

15. 
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Figure 13: Risk profile for ore and waste tonnages for Case 1 solution. 

 

Figure 14: Risk profile for metal tonnages and NPV for Case 1 solution. 

 

Figure 15: East-West deepest vertical section (N10290) for Case1. 

3.4.2.2 Case 2 

In Case 2 bench limits are setup. The number of benches allowed to be mined 

from periods 1 to 8  has the following configuration: free,1,1,2,3,5,6,9 . Results are 

presented in Figures 16 to 18. The solution indicates that an additional average 
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of 4.0 Mt of ore and 3Mt of waste being mined in this case with the same 

average NPV of 277 million dollars, with 90% chance of being higher than 252 

million dollars. The differences in waste quantities are mostly related to periods 4  

and 8 . Comparing these numbers, vertical sections and risk profiles, the 

schedules in Cases 1 and 2 are identical for all practical purposes. The negligible 

physical differences are mostly located in periods 4 , 5  and 6, when comparing 

Figures 13 and 15. 

 

Figure 16: Risk profile for ore and waste tonnages for Case 2. 

 

Figure 17: Risk profile for metal tonnages and NPV for Case 2. 
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Figure 18: East-West vertical section (N10290) for Case 2 schedule. 

3.4.2.3 Case 3 

Case 1 shows the same results of the “Full SIP” for no bench limits setup, while 

Case 2 includes bench limits with the same maximum depth setup. Case 3 

relaxes the maximum depth from 20m to 30m and uses the same parameters as 

Case 2, returning slightly less waste over period 3 . Figures 19 to 21 indicate that 

there are negligible differences in the risk profiles.  Vertical sections of Cases 2 

and 3 are also similar, with differences mostly located over periods 3, 4  and 5 . 

 

Figure 19: Risk profile for ore and waste tonnages for Case 3. 
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Figure 20: Risk profile for metal tonnages and NPV for Case 3. 

 

Figure 21: East-West vertical section (N10290) for Case 3 schedule. 

3.4.2.3 Case 4 

Case 4 defines new limits for R
tO and R

tO (equation 9) with remaining parameters 

equal to Case 2. Previous risk profiles for ore production have shown stable 

behaviour after period 2 , which indicates the possibility of finding a feasible 

schedule within “tighter” limits. Defining “tighter” limits (Case 4) is not 

recommended before evaluating possible outcomes from “freer” setups (Cases 1 

to 3), as it can incur in infeasibility or risk averse solutions. Results obtained 

show similar physical schedule, with slightly differences from period 2  to 7 , and 

risk profiles when compared to previous cases, with exception of the waste 

profile that reduces from period 3 to period 4 . There is improved control in the 



54 
 

 

ore production variability, which increases over time, as presented in Figures 22 

to 24. It can be noted that the same level of variability in period 2  for Cases 1 to 

3 is being respected up to period 4  for Case 4, guaranteeing lower risk for a 

longer time horizon. 

 

Figure 22: Risk profile for ore and waste tonnages for Case 4. 

 

Figure 23: Risk profile for metal tonnages and NPV for Case 4. 

 

Figure 24: East-West vertical section (N10290) for Case 4 schedule. 
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3.4.3 Comparison 

All cases presented in the previous section show similar risk profiles and physical 

schedules if compared to the “Full SIP”. The study suggests that the proposed 

approach converges to a similar solution, regardless of when different 

parameters are used. There are, however, substantial differences in computing 

times from the “Full SIP” to the other cases. The following reporting is based on 

runs over a 64 -bit PC with Intel® Core™ i 7 - 2600S CPU @ 80.2 GHz, 8  GB 

RAM, 8  processors and using the IBM ILOG CPLEX 4.12  optimization software 

callable library. The proposed alternative sequential implementation reduces the 

processing times from days to minutes. Results for Cases 1 to 4 were obtained in 

~0.6% of the processing time necessary for the “Full SIP”.  

3.5 Application at a Copper Deposit 

The proposed method is applied to a copper orebody, represented by 138,176  

mining blocks of 152525  m³ size, to demonstrate the implementation of the 

proposed formulation at a reasonable sized deposit. Table 2 shows the 

parameters considered for the yearly-based schedule. 

The results in terms of risk profiles and physical design for a 25-year schedule 

are presented in Figures 25 to 28. The optimization process considers all 

138,176 blocks of the deposit, scheduling 825,90 blocks for 25 years of production. 
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Copper price, $/lb 2.00 

Selling cost, $/lb 0.23 

Mining cost, $/t 1.67 

Processing cost, $/t 6.00 

Recovery, % 80 

Discount rate, % 8.5 

Mining capacity, Mt/year 100.0 

Expected ore production, Mt/year 60.0 

Slope angle, degrees 41.0 

Cutoff grade, % 0.2 

Table 2: Economic and technical parameters for the case study. 

 

Figure 25: Risk profile for ore and waste tonnages for yearly schedule. 
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Figure 26: Risk profile for metal tonnages and NPV for yearly schedule. 

 

Figure 27: North-South vertical sections for yearly schedule. 

 

Figure 28: East-West vertical sections for yearly-based schedule. 
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The ore production risk profile shows stable behaviour around the target with low 

uncertainty. The waste profile oscillates in approximately 5 Mt around 27Mt of 

production also with low risk associated, being above 30Mt for 2  periods. These 

variations do not allow for a practical fleet management, but production picks and 

valleys can be smoothed by anticipating waste during the schedule design. The 

expected metal production started with 828 kt reducing to a level slightly above 

350kt in year 5 , when it was keep almost constant until year 10 . More than 50% 

of the expected NPV is obtained in the first 4  years of production and 90% is 

achieved within 15  years. Figures 27 and 28 present vertical sections of the 

physical schedule obtained with complex shapes that need to be properly 

designed. Slope constrains are respected, remembering that vertical sections are 

presenting only blocks, but angles are controlled over surface elevations. 

3.6 Conclusions 

A stochastic mathematical programming formulation based on surfaces was 

proposed herein for mine production scheduling optimization. The proposed 

sequential implementation divides the scheduling problem into sub-problems, 

using surfaces based on relevant engineering aspects of multiple-period 

scheduling. Fractional periods are defined to increase efficiency and guide the 

developments of the mine to regions where short-term periods also tend to 

respect constraints. Each multiple-period solution is further processed by 
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allowing iterative changes in surface elevations of all periods simultaneously. The 

sequential implementation has been shown to generate the same practical 

results of the “Full SIP” case, even for different parameters. A case study over a 

full field copper deposit addresses the question of size, proving that the method 

can be efficiently applied to relatively large instances. 

3.7 Chapter Appendix 

In order to check the robustness related to the number of realizations considered 

in the optimization process, the method was performed for a 25-years schedule 

using sets of 15 , 20  and 25  simulations. The behaviour of the resulting risk 

profiles over Figures 29 and 30 is the same, showing that running the 

optimization process with 15  simulations would be enough to describe the 

uncertainty over this deposit and would drive the process to almost the same 

results. 

 

Figure 29: Risk profile for ore, considering 15 , 20  and 25 simulations. 
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Figure 30: Risk profile for NPV, considering 15 , 20  and 25 simulations. 

Results presented in Section 3.5 consider a set of 25 simulations as input for risk 

profiles. A different set of 25 realizations was considered here for risk analysis 

over the same physical schedule obtained to assess the sensitivity of results to 

another group of simulations. Risk profiles are presented in Figures 31 and 32. 

 

Figure 31: Risk profile for ore and waste for another set of simulations. 
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Figure 32: Risk profile for metal and NPV for another set of 25 simulations. 

Risk profiles over ore and metal production (Figures 31 and 32) are following the 

same pattern described previously (Figures 25 and 26). Waste and NPV profiles 

are, in practical terms, identical, including the two picks above 30Mt in the same 

years. Therefore, it can be affirmed that the method, when applied to this deposit, 

returns robust results for 25 simulations. Figure 33 presents the risk profile for 

the average grade over periods, also considering another set of 25 simulations: 

 

Figure 33: Risk profile for average grade for another set of 25 simulations. 

Note that period 21  has “relatively” higher uncertainty in terms of expected 

average copper grade, but low variability is observed over all periods scheduled. 
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Chapter 4 – TWO-STAGE STOCHASTIC SURFACE CONSTRAINED 

MINE PRODUCION SCHEDULING WITH PIT DISCRETIZATION 

 

4.1 Introduction 

Mining is an activity based on extracting underground materials in a given 

sequence, such as to maximize the net present value (NPV) of the project. 

Planning the sequence of extraction, by the definition of a life-of-mine production 

schedule, requires understanding the uncertain metal quantities available 

throughout the deposit. Conventional estimation methods do not capture the 

intrinsic geological variability and uncertainty, returning single and possibly 

misleading production forecasts (Dimitrakopoulos et al, 2002; Dowd, 1994), 

which may underestimate potential metal production and project value (Godoy, 

2003). A review of these issues as well as an overview of recent developments in 

dealing with uncertainty (stochasticity) in optimizing mine design and production 

scheduling can be found in Dimitrakopoulos (2011). 

Stochastic optimization for long-term mine production scheduling using simulated 

annealing was a concept introduced by Godoy and Dimitrakopoulos (2004) and 

was further explored in Leite and Dimitrakopoulos (2007) and Albor and 

Dimitrakopoulos (2009), currently being applied to scheduling with multiple rock 

types and processing streams (Montiel and Dimitrakopoulos, 2012). Stochastic 
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integer programming with recourse is introduced in Ramazan and 

Dimitrakopoulos (2005, 2012) to maximize total discounted cash flows, while 

minimizing deviations from production targets (ore tonnage, grade and metal), as 

well as deferring risk to latter production periods considering the concept of 

orebody risk discounting introduced by Dimitrakopoulos and Ramazan (2004), 

which penalizes deviations from production targets differently over mining 

periods. The SIP framework considers stockpiles and allows for controlling 

grades, ore and metal productions. The well-known drawback of any mixed-

integer programming based approach in the mine scheduling context is 

computational due to the number of binary variables (Hustrulid and Kuchta, 

2006). Notable variations of the SIP framework include: long- and short-term 

mine production scheduling based on simulated future grade control data 

(Jewbali, 2006; 2010); Albor and Dimitrakopoulos (2010) use the SIP formulation 

for pushback design, demonstrating that stochastically generated pit limits are 

larger than the corresponding conventional ones; Menabde et al. (2007) propose 

an alternate formulation that uses a variable cutoff grade and relies on 

aggregations of blocks to ensure the problem is computationally tractable; 

Boland et al. (2008) propose a multi-stage stochastic programming approach that 

considers both processing and mining decisions. To address the computational 

and size limits of SIP mine scheduling formulations, Lamghari and 
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Dimitrakopoulos (2012) introduce Tabu and Variable Neighborhood Search, 

bypassing the need to solve SIP formulations with conventional integer 

programming solvers and assisting computationally efficient solutions. Regarding 

stochastic pit space discretization, something which can facilitate the scheduling 

of large deposits, Asad and Dimitrakopoulos (2012) proposed a graph structure 

to consider geological and market uncertainties and solve the problem using a 

parametric maximum flow algorithm integrated with Lagrangian relaxation and 

the subgradient method. The approach considers grade and material uncertainty 

in order to reduce risks of misclassification over different processes. 

Chapter 3 introduced a SIP formulation based on mining surfaces, building upon 

previous work from Goodwin et al. (2005), where the objective is to maximize 

discounted cash flows and control the risks of not achieving ore production 

targets. The work proposed a hybrid approach combining the mathematical 

formulation with a sequential implementation. Each mining period is subdivided 

and the schedule is sequentially optimized until finding an initial solution for the 

entire mining period, which is included in the long-term schedule and optimized 

jointly with periods previously defined. This formulation does not consider 

recourse actions for risk management which is included herein. 

The concept of surfaces in mine production schedule optimization, first defined in 

Goodwin et al. (2005), is based on the fact that mining blocks describing a 
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deposit are not independently distributed in space and can be grouped into 

vertical columns. Surfaces are defined as sets of elevations in which mining 

periods in the production schedule are divided. Each column of blocks can be 

partitioned by T  surfaces into 1T  groups of blocks. Surfaces are divided into 

small pieces called cells. For each surface (or period), a cell is defined as a 

continuous variable carrying the elevation associated with a fixed pair of 

coordinates  yx, . Block attributes are accumulated starting from the topography 

down to the last block over each column, with cumulative values being stored at 

each level, which allows calculations by taking differences between surfaces. A 

key aspect of this approach is the need to associate blocks with surface cells and 

it is performed by comparing their elevations in space, as discussed herein. 

The present paper builds upon previous work by considering the modelling with 

surfaces and the sequential approach from Chapter 3 and a two-stage SIP 

formulation with recourse actions as in Ramazan and Dimitrakopoulos (2012). In 

the next section, the mathematical formulation is proposed with a review of the 

sequential implementation. Then, a case study in a gold deposit shows the 

application of the method to a highly variable and relatively large deposit. The 

approach is applied first to discretize the pit space and, later, to define the yearly-

based production schedule. Conclusions follow. 
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4.2 Two-Stage Stochastic Surface Based Scheduler 

4.2.1 Notation 

 M : number of cells in each surface. 

 Z : number of levels in the orebody model. 

 T : number of periods over which the orebody is being scheduled. 

 S : number of simulated orebody models considered. 

 z
cE : elevation of the centroid for a given block  zc, . 

 xH : maximum difference in elevation for adjacent cells in contact laterally in 

the x direction, calculated by  tan xH x , where x  is the block size in x  

and   is the maximum slope angle. 

 yH : maximum difference in elevation for adjacent cells in contact laterally in 

the y  direction, calculated by  tan yHy , where y  is the block size in 

y . 

 dH : maximum difference in elevation for adjacent cells in contact diagonally, 

calculated by      tan22  yxHd . 

 cX , cY  and cD : equivalent to xH , yH  and dH  concept, the sets of adjacent 

cells, laterally in x , in y and diagonally, for a given cell c , respectively. 

 z
cT : cumulative tonnage of block  zc,  and all blocks above it. 

 z
scO , : cumulative ore tonnage of block  zc,  and all blocks above it in scenario 

s . 
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 tT  and tT : lower and upper limits, respectively, in total tonnage to be 

extracted during period t . 

 tO  and tO : lower and upper target limits, respectively, in ore tonnage to be 

extracted during period t . 

 
tC  and 

tC : costs associated to unit shortage and surplus, respectively, in 

tonnage of ore processed over period t. 

 z
stcV ,, : cumulative discounted economic value of block  zc,  and all blocks 

above it in scenario s and period t . 

 tce , : continuous variables associated with each cell c  for each period t , 

representing cell elevations. 

 z
tcx , : binary variables that assumes 1 if block  zc,  is the last block being 

mined in period t  over c , and 0 otherwise. z
cx 0,  is defined as constant equal to 

0, ),( zc . 

 
std ,  and 

std , : deviation variables measuring shortage and surplus, 

respectively, in the tonnage of ore processed over period t  under scenario s. 
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4.2.2 Mathematical Model 

The mathematical model proposed in Chapter 3 is extended herein to a risk 

management framework with a two-stage SIP formulation with recourse actions 

(Ramazan and Dimitrakopoulos, 2012). The objective function (1) maximizes the 

expected net present value from mining and processing selected blocks over all 

considered mine production periods, and manages the risk of not achieving ore 

production targets through the definition of a risk profile. 
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z
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1
max               )1(  

The constraints presented in Equations (2) to (8) are scenario-independent, while 

constraints in Equations (9) and (10) are scenario-dependent stochastic 

constraints. 

Surface constraints: the following set of constraints (2) guarantee that each 

surface t  has, at maximum, the same elevation as surface 1t , which is used to 

avoid crossing surfaces and blocks being mined more than once. 0,ce  are 

constant elevations defined by the actual topography of the deposit. 

0,1,  tctc ee                     ;,,1 Mc        Tt ,,2              2  

Slope constraints: the maximum surface slope angle is guaranteed herein by 

Equations (3) to (5). Each cell elevation is compared to the elevation of the 8  

adjacent cells, which therefore represents a set of Tnynx 8  continuous 

constraints. Note that adjacent cells are compared twice, guaranteeing upward 
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and downward slopes. The number of slope constraints controlled by surface 

relations does not depend on slope angles and requires fewer constraints than 

conventional formulations. This is noted as follows: 

xtxtc Hee  ,,              ;,,1 Mc    ;,,1 Tt       cXx                3  

ytytc Hee  ,,  ;,,1 Mc    ;,,1 Tt       cYy               4  

dtdtc Hee  ,,   ;,,1 Mc    ;,,1 Tt      cDd                5  

Link constraints: mining blocks and surfaces are linked in the formulation by 

comparing the elevation of each block centroid with the elevation of each 

surface. Variables z
tcx ,  will assume value 1 only for block centroids that are in the 

same elevation or exactly above the correspondent surface (index t ). Constraints 

(6) guarantee this link and constraints (7) guarantee that there is only one block 

defining the end of each period t  over each column c  of blocks z . 

  zexE tc

Z

z

z
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z
c  


,

1
,0   ;,,1 Mc   Tt ,,1               6  

1
1

, 


Z

z

z
tcx                                   ;,,1 Mc     Tt ,,1               7  

Mining constraints: constraints (8) ensure ore and waste production requirements 

are respected during each mining period: 

  t
z
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z
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M

c
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z
ct TxxTT  

 
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Constraints (7) and (8) measure deviations in processed ore tonnages, 

considering upper and lower bounds, tO  and tO , in order to penalize in the 

objective function. 

  tst
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z
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z
sc OdxxO  


 
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1 1
,             ;,,1 Ss        Tt ,,1    9  
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z
sc OdxxO  


 
 ,1,,

1 1
,             ;,,1 Ss        Tt ,,1            10  

The variables involved in the formulation are defined as following. Note that 

elevations are continuous and can be initially constrained by the limits of the 

orebody models. 

tce ,    ;,,1 Mc   Tt ,,1    11  

 1,0, 
z
tcx   ;,,1 Mc    ;,,1 Tt   Zz ,,1   12  

 stst dd ,, ,    ;,,1 Ss   Tt ,,1    13  

4.2.3 Sequential Implementation 

It was shown in Chapter 3 that solving a similar mathematical formulation based 

on surfaces using an exact method is impractical. The sequential implementation 

proposed therein is also considered herein, replacing the mathematical 

formulation by the one presented in Section 4.2.2. The approach is used first to 

discretize the pit space into phases of similar ore tonnages, where the 

formulation forces the scheduling of more profitable materials to initial stages of 

development. These defined phases are used later in order to reduce the 

complexity of the yearly-based production scheduling, which is optimized using 
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the same approach, but following the pre-defined phases. The sequential 

implementation works as follows, where periods can be considered as years or 

phases. The case study to be presented in Section 4.3.2 solved more than 100 

smaller optimization processes before finding the final solution, therefore steps 

are explained here in general terms and schematic illustrations can be found in 

Chapter 3. 

Periods are included in the process in a stepwise fashion. A new period 1t is 

added to the optimization process only after the method returns its best solution 

for a mining schedule of t  periods. The proposed formulation is executed 

successive times and results for one optimization process are used as limiting 

assumptions for the next processes. The steps of the sequential implementation 

are: 

1. Take the actual topography of the deposit as a top limiting surface; no other 

surface can go above this limit. 

2. Similarly, define a bottom limit by eliminating external waste volumes, 

according to slope angles, but guaranteeing that every block with some 

probability of being ore is above this limit. No surface in any period can go 

deeper than such limits and blocks below are not considered in optimization 

processes. 
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3. If no phases are provided, this step should be skipped; otherwise, each 

period must be associated with one phase beforehand. Each surface cannot 

go deeper than its phase limits and blocks below are not considered in 

optimization processes for this period. 

4. Find an initial solution for period 1 with successive runs of the mathematical 

formulation proposed in Section 4.2.2, given pertinent operational 

considerations: fractional periods, bench and maximum bench limits. 

5. Iteratively improve the initial solution, using the same formulation in a Local 

Search approach with neighborhood definition. 

6. Find an initial solution for period 2, as in Step 4. The results of Steps 5 and 6 

will give a feasible schedule of 2 mining periods. 

7. Improve this schedule considering the same Local Search approach from 

Step 5 but for all mining periods jointly. 

8. Loop over Steps 6 and 7, including new periods, until there is no more 

profitable material available. 

9. Freeze all periods except for the last and look for extra deeper blocks to be 

included, still respecting limits defined in Steps 2 and 3. 

In order to use this approach for pit discretization, targets and limits required for 

each phase should be defined, including a rescaled economical discount rate per 

phase. The approach is then performed including phases until there is no more 
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profitably mineable ore available. Finally, Step 9 of the implementation is 

performed, guaranteeing all profitable material is included. The schedule of 

phases is performed more efficiently, due to the reduced number of phases, if 

compared to the number of mining periods. The economical discounting per 

phase forces the method to mine the best material available under physical 

constraints in the first phase, and the same occurs sequentially for the next 

phases. The resulting surfaces for this schedule of phases represent an 

optimized discretization of the pit space into pieces with controlled conditions in 

terms of ore tonnages. These surfaces are later used to limit the complexity of 

the yearly-based mine production schedule optimization. Each mining period is 

associated to one phase; for example, if two phases were defined with ~100Mt of 

ore production and the schedule has to provide mining periods with ~40Mt of ore, 

Periods 1 and 2 can be assigned to Phase 1 and the remaining periods to Phase 

2. The scheduling method limits the bottom of each mining period surface (Step 

3), eliminating blocks below the assigned phase prior to the optimization 

processes, which improves efficiency and allows scheduling of larger deposits 

with longer life-of-mine. 

4.3 Case Study at a Gold Deposit 

The conventional approach and the proposed method are applied to a gold 

orebody, represented by 98,081 mining blocks of 20x20x20m³ size, to 
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demonstrate the performance of the proposed formulation and its sequential 

implementation in comparison to industry best practices. Table 3 shows the 

parameters considered for the yearly-based schedule, which were taken as 

approximated values from actual large gold projects for testing purposes that 

illustrate the method. 

Gold price, $/g 40.0 

Mining cost, $/t 6.0 

Processing cost, $/t 20.0 

Recovery, % 90.0 

Discounting rate per period, % 10.0 

Mining capacity, Mt/year 85.0 

Expected ore production, Mt/year 15.0 

Slope angle, degrees 54.0 

Table 3: Economic and technical parameters for the case study. 

4.3.1 Conventional Mine Production Scheduling 

The Whittle Software was used for mine production scheduling according to 

industry best practices based on a single estimated model (deterministic 

approach). In order to assess the geological uncertainty involved, this schedule 

was evaluated for each simulated orebody model considered, generating the risk 

profiles presented over Figures 34 to 36. 
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Figure 34: Risk profile for ore production in the conventional schedule. 

 

Figure 35: Risk profile for waste production in the conventional schedule. 

 

Figure 36: Risk profile for metal production in the conventional schedule. 
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All profiles illustrate that the answers provided by the deterministic approach are 

not likely to be achieved in practice when evaluated over equally probable 

scenarios. Figures 34 and 35 show that a representative amount of ore is being 

misclassified as waste, with consequent overestimation of the required fleet to 

handle inexistent extra quantities of waste. This schedule, if performed in 

practice, would require a stockpile with capacity above 15Mt to handle the ore 

not forecasted by the plan that has to be reclaimed in one extra year of 

production. Figure 36 shows the respective metal content available in each 

scheduled period with risk profile also above deterministic expectations. Net 

present value profiles are not comparable as the provided schedule is not 

realistic in terms of processing capacities. 

4.3.2 Stochastic Pit Discretization 

The method proposed in Section 4.2 has no requirements in terms of time frame 

for each period being scheduled; hence, it can be used to schedule weeks or 

decades of production and conclusions will be valid for the time frame chosen 

and the economic discounting rate considered. As the time frame increases more 

material is smoothed out inside periods and the economic discounting rate 

should be rescaled. For the same reason that yearly-based schedules are 

considered as a fair pit discretization to allow for later scheduling of months of 

production, the scheduling of phases is a fair discretization of the pit space to 
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constrain a yearly-based schedule. The advantage of this kind of pit 

discretization is that geological uncertainty is taken into account while controlling 

ore tonnages per phase, which are more suitable limiting assumptions for a 

stochastic mine scheduler. Note that the concept here is different than the 

conventional definition of pushbacks where nested pits are defined by 

maximizing the undiscounted cash flow for a set of increasing metal prices. The 

effect of economic discounting considered here forces blocks with higher value to 

be mined as soon as possible with opposite effect for blocks with lower values; 

working with undiscounted values is just a shortcut for methods that are 

incapable to work within time frames. 

The sequential algorithm was first applied to discretize the pit space into phases 

with similar ore production, but there is no operational parameter being 

controlled, such as minimum mining width, for example. The target ore 

production was setup to 50Mt in order to allow for 3 years of schedule (15Mt 

each) inside the first phase, leaving 10% (or 5Mt) of flexibility for risk 

management. Figures 37 and 38 show sections of the resulting 4 phases, 

presenting shapes of increasing size with more waste being mined in later 

phases. 
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Figure 37: North-South vertical section E1030 for the mining phases. 

 

Figure 38: East-West vertical section N2250 for the mining phases. 

The associated risk profiles over cumulative NPV, ore, waste and metal 

productions, along with the corresponding deciles P10, P50 and P90, are shown 

over Figures 39 and 40. The ore production profile shows higher production over 

the last phase, as the material of Phase 5 (~10Mt of ore) was incorporated into 

Phase 4. The waste production profile shows increasing behavior throughout 

phases. Metal production is always between 55 and 70 tonnes per phase and all 

production profiles demonstrate low uncertainty around expected values. The 

profile over cumulative NPV shows increasing behavior until the last phase and a 

small increment given by Phase 4; this profile cannot be evaluated in terms of 

absolute values, as the discounting rate applied is a long term approximation. 
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The amount of ore contained up to Phase 4 can be schedule at most in 14 

periods. Hence, mining periods 1 to 3 are assigned to Phase 1; 4 to 6 to Phase 

2; 7 to 9 to Phase 3; and the remaining to Phase 4. The surface of each period 

cannot cross below the surface of its assigned phase during the mine production 

schedule optimization. 

 

Figure 39: Risk profiles for ore and waste production for mining phases. 

 

Figure 40: Risk profiles for metal and cum. NPV for mining phases. 
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4.3.3 Schedule Results 

The resulting physical schedule is presented over Figures 41 and 42 with mining 

periods respecting phases previously defined. Note that results are not expected 

to be smoothed out as operational constraints are not taken into account in the 

mathematical formulation. 

 

Figure 41: NS vertical section E1030 for the stochastic yearly schedule. 

 

Figure 42: EW vertical section N2250 for the stochastic yearly schedule. 

The associated risk profiles over cumulative NPV, ore, waste and metal 

productions, along with the corresponding deciles P10, P50 and P90, are shown 

over Figures 43 to 46. When considering the stochastic optimizer, four extra 

mining periods are scheduled. Figure 43 shows production controlled close to the 
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target, except by a 10% shortfall in Year 9, but stable production over the 

remaining years. The shortfall represents a situation where it was worthy to pay 

for the incurred penalties instead of mining more ore to complete the capacity, 

probably due to the amount of overlaying waste. The profile shows lower risk in 

initial periods if compared to later periods, as proposed by the formulation. Figure 

44 shows profile with increasing behavior, similarly to predefined phases, and 

almost no risk throughout the whole life-of-mine. Figure 45 shows higher metal 

production during the first two years, stabilizing after that. There is a low risk 

associated and it does not vary throughout the life-of-mine. Figure 46 presents 

the risk profile for the cumulative NPV with a total expected value of 1.35 billion 

dollars with 90% chances of being above 1.18 billion dollars. There is less than 

3% increment in expected NPV after period 10 for the stochastic case. 

 

Figure 43: Risk profile for ore for the stochastic yearly schedule. 
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Figure 44: Risk profile for waste for the stochastic yearly schedule. 

 

Figure 45: Risk profile for metal for the stochastic yearly schedule. 

 

Figure 46: Risk profile for NPV for the stochastic yearly schedule. 
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4.4 Conclusions 

The present work proposes a new mathematical programming formulation 

making use of limiting surfaces in the context of SIP for mine production 

scheduling optimization, adding the benefits of easier and general slope angle 

management, with simultaneous maximization of discounted cash flows and 

minimization of risks of not achieving production targets. The sequential 

implementation considered divides the scheduling problem into sub-problems, 

using surfaces based on relevant engineering aspects of multiple-period 

scheduling. Periods are included in a stepwise fashion by first defining one initial 

solution and later improving this solution using a Local Search strategy based on 

the same mathematical formulation. The approach is first applied to discretize the 

pit space into mining phases, which are then considered to reduce the complexity 

of the yearly-based mine production schedule optimization. A case study over a 

full field gold deposit addresses the question of size and returns 19% higher 

expected NPV with 43% more ore processed, if compared to industry best 

practices. 
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Chapter 5 – CONCLUSIONS AND FUTURE WORK 

 

This thesis starts by presenting a literature review on conventional and stochastic 

life-of-mine production schedule optimization methods. Developments have 

shown that the use of stochastic frameworks allows finding mine production 

schedules with higher value and lower risk, simultaneously, while the introduction 

of (meta-)heuristic approaches allows for efficient implementations with results 

close to the optimal solution. The review also presents previous works which 

introduced the concept of surfaces in this context addressing the issues of 

efficiency. Chapter 3 proposes a SIP formulation based on surfaces to address 

the optimization of life-of-mine production scheduling, whereby the supply of 

metal is uncertain and described by a set of equally probable orebody 

representations. The proposed formulation maximizes discounted cash flows, 

controls risk of deviating from production targets and facilitates a divide-and-

conquer approach, where scheduling can be performed sequentially, facilitating 

production scheduling for relatively large mineral deposits. Applications of the 

proposed mathematical formulation show computational efficiency as well as the 

equivalence of solutions generated sequentially. Chapter 4 extends this 

formulation to a two-stage SIP that manages the risk of deviating from production 

targets. The sequential implementation is considered for a pit space 
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discretization followed by a yearly-based mine production scheduling at a 

relatively large gold deposit. 

All case studies returned results in a reasonable amount of time, with production 

targets controlled, risk postponed to later stages of development and 

improvements in expected NPV if compared to deterministic industry best 

practices. Results proved the efficiency and suitability of the method for real 

sized instances, including the benefits of accounting for uncertainty in metal 

content. 

Other possible improvement regarding the proposed method: 

 Replace the CPLEX optimizer by a meta-heuristic approach, looking for 

improvements in efficiency. 

 Introduce the use of parallel algorithms implemented over the CPU or the 

GPU (central/graphics processing unit). Neighborhood definitions and the 

choice of the meta-heuristic approach should take into account the 

feasibility of a parallel code. 

 Adapt the method to consider simulations of prices and costs forecasts. 
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Appendix A – Implementation Details 

 

This thesis focused on explaining and exemplifying the main parts of the 

proposed method. Details of the implementation are discussed in this appendix.  

A.1 Basic Procedures 

The proposed formulations guarantee that there is exactly one block (binary 

variable) assuming value 1 over each column and mining period, and each of 

these blocks is located immediately above its respective surface. Therefore, one 

extra layer of air blocks above the initial surface must be created in order to avoid 

infeasibility in places where there was no mining. 

The sequential approach should provide reports/files throughout its execution 

and allow for recovering intermediate solutions for tests with different sets of 

parameters; this remains a valid comment for individual surfaces as well, which 

could be used at any moment to limit other processes. 

The definition of the number of fractional periods is case specific and has to be 

tested until the most efficient setup is found. Less fractional periods mean more 

tonnage for each, which may imply infeasibility or penalties, due to bench and 

maximum depth limits. Defining fractions dynamically combined with the 

maximum depth parameter was tested without success. Details will not be 
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reported here, but the conclusion is that fractions should have equal size, 

otherwise processes become unstable and less efficient. 

A.2 Gap Setup 

One important parameter intrinsic to integer programming models is the 

maximum gap accepted, which is the percentage distance between the actual 

integer solution and the best solution found by the linear relaxation. The 

proposed method essentially has two different kinds of problems to solve: finding 

initial solutions through optimizations of fractional periods and improving these 

solutions through multiple-period optimizations. For the first case, due to the 

reduced size and highly constrained rules, CPLEX is efficient, returning solutions 

below 1% gap in a few seconds or minutes for the deposits studied. However, for 

the multiple-period steps, maximum gap definition becomes a sensitive 

parameter. 

A.3 Bench Limits 

Bench limits were presented as a tool to reduce size and complexity of the 

optimization process, but constrained bench limit configurations could drive 

processes to infeasibility or forbid the optimizer to find deeper (maybe more 

profitable) solutions. Another case over the same testing deposit illustrates one 

solution found, considering the following bench limits configuration: 7, 4, 4, 4, 4, 

3, 1, free. The results of the optimized schedule are presented in Figures 47 to 
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49, showing that risk profiles are still similar to previously presented cases, 

except by a small peak in metal production over period 5. The physical schedule 

is significantly different which is a result of stronger bench limits that do not allow 

mining to go deeper. Tighter bench constraints allow for finding different 

schedules that may achieve similar economical results and risk profiles but with 

operational consequences and benefits in processing time, as this case ran 2 

times faster than the others. Results indicate that mining could go deeper, but it 

is forced to advance laterally, leaving more blocks isolated over the boundaries 

of the pit. 

  

Figure 47: Risk profile for ore and waste tonnages for Case 4. 
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Figure 48: Risk profile for metal tonnages and NPV for Case 4. 

 

Figure 49: East-West vertical section (N10290) for Case 4 schedule. 

A.4 Further Computational Improvements 

Regarding the maximum depth parameter, recall that the methodology presented 

in chapter 3, after finding the solution for the first fractional period, gives a range 

over the whole orebody model area. However, areas that were not mined in the 

first fractional period have a lower chance of being mined in the second. Hence, 

for dealing with larger deposits, such range was defined only for mined areas and 

surroundings. For the first fractional period, there was no change in the 

implementation. Figure 50 compares this step of the method before and after 

changes. The same idea was also implemented for tolerance ranges. 
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Figure 50: Maximum depth step before (top) and after (bottom). 

Regarding multiple-period optimizations, considerable improvement can be 

obtained by modifying only the last surface included, which works faster and 

reduces the complexity of next multiple-period steps. 

Modifying the surface of period t  tends to force bigger changes in period 1t  

than in period 2t ; therefore, the tolerance range given for later periods should 

be bigger than for earlier ones. The implementation considered a factor of 2 to 

reduce the tolerance depending on the period, that is: tolerance x  is given to 

period t , 2x  to period 1t , 4x  to 2t , and so on. This strategy reduced 

significantly the complexity of multiple-period problems, without forbidding 

iterative improvements. 

For dealing with bigger deposits, prior to scheduling years, additional steps had 

to be performed. Following the concept of reserves parametrization, using a 

series of factors over the price of the metal (revenue factors), the same approach 

presented in chapter 3 was performed, but dropping production and variability 
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constraints. The algorithm was executed once for each provided factor, 

generating a set of nested pits, for the larger copper deposit presented in section 

3.5. Figure 51 shows the 21 nested pits generated with factors varying from 0.20 

to 1.00 in step size of 0.04. The case study over chapter 4 did not require this 

step, due to its reduced size and shorter life of mine. 

 

Figure 51: Section E19200 for nested pits applying revenue factors. 

Using those nested pits as guide, the full amount of rock was divided into 

phases, similarly to the pit discretization of chapter 4. Considering expected ore 

production per phase close to 150Mt, no limit in total production, no variability 

control and a rescaled discounting rate, it was profitable to schedule 151,486 

blocks into 15 phases, using the same algorithm presented previously. The risk 

profiles and physical design of those phases are presented in Figures 52 to 54. 
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Figure 52: Risk profile for ore and waste tonnages for phases. 

 

Figure 53: Risk profile for metal tonnages and NPV for phases. 

 

Figure 54: North-South vertical section (E19200) for phases. 

The NPV risk profile is meaningless, considering the discounting rate defined 

over phases, not years, but the remaining results define a reasonable division of 
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the pit space from more profitable to less profitable volumes. Ore production is 

achieved for all phases with low risk, even though there is no imposed control; 

this is due to the very low cutoff grade defined, which classified most of the 

valued blocks as ore. Waste production seems possible to be controlled up to the 

10th phase, increasing absurdly after that. Metal production follows the expected 

behavior, decreasing over time. Results obtained here guided the presented 

yearly-based schedule, keeping mining just up to year 25, as there is an 

explosion on waste management with negligible improvements in NPV during 

later periods. 
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Appendix B – DVD with Data and Programs Used 

 

Attached to this Master thesis is a DVD with the database for tests used in 

Chapter 3 and the last version of the C++ code. 

 


