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Abstract: The simultaneous stochastic optimization of mining complexes optimizes various compo-
nents of the related mineral value chain jointly while considering material supply (geological) un-
certainty. As a result, the optimization process capitalizes on the synergies between the components 
of the system while not only quantifying and considering geological uncertainty, but also producing 
strategic mine plans, maximizing the net present value. This paper presents an application of sim-
ultaneous stochastic optimization at a large gold mining complex. The complex contains three open-
pit mines, three stockpiles, a waste dump, and a processing facility. Material hardness management 
is integrated at the processing facility. The case study generated production schedules for each min-
eral deposit considered, as well as an overall assessment of the project and related forecasts. It re-
sulted in an 18 year life-of-asset and identified the semi-autogenous grinder (SAG) mill as the bot-
tleneck of the operation. 

Keywords: industrial mining complex; simultaneous stochastic optimization; production schedul-
ing; strategic planning; gold mining 
 

1. Introduction 
Mining complexes or mineral value chains are systems composed of various compo-

nents, including mines, stockpiles, processors, waste dumps, tailings facilities, transpor-
tation, and so on [1–5]. The simultaneous stochastic optimization (SSO) approach inte-
grates all components of a mineral value chain into a single mathematical formulation to 
maximize the production and net present value (NPV) over the life of the related mining 
complex. By considering the interactions between the components of a mineral value 
chain, the SSO approach defines the extraction sequences for the mines considered, cut-
off grades, stockpile management, and blending at the processing facilities to maximize 
NPV over the life of the assets involved. The approach also manages material supply un-
certainty and the related risk based on geostatistical simulations of the relevant properties 
of the mineral deposits involved, which reproduce the local variability and uncertainty of 
the available material [6,7]. 

Traditional mine planning and optimization methods treat the major components of 
the related mineral value chain separately in a sequential fashion and are deterministic, 
ignoring the interdependencies of the components and failing to manage the technical 
risks arising from an uncertain material supply. Global optimizers have been developed 
to optimize jointly different components of a mining complex [8–13]; however, they are 
deterministic and make certain approximations. Stochastic optimization frameworks 
have been developed to incorporate and manage the uncertainty in the optimization of a 
mineral value chain. These approaches use stochastic simulations of mineral deposits to 
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quantify the material supply uncertainty and manage the associated risks [14–16], as well 
as determine optimal cut-off grade policies [17–19]. Ramazan and Dimitrakopoulos 
[14,15] present a stochastic integer program to optimize a mineral deposit’s extraction 
schedule, maximizing NPV and minimizing deviations from ore tonnage, grade, and 
metal quantity and quality targets. Mai et al. [20] propose a stochastic integer program-
ming model to maximize the NPV of a mineral deposit and minimize the risks of not 
meeting production targets under geological uncertainty. However, the approach aggre-
gates blocks to reduce the computational requirements of the optimization problem. Mo-
rales et al. [21] present a method to optimize mine and mill operations under grade, re-
covery, and mill throughput uncertainty. Menabde et al. [17] extend Blasor, the optimiza-
tion tool presented by Stone et al. [9], to include geological uncertainty and cut-off grade 
optimization based on grade bins. In addition, the optimization tool sequences multiple 
pits, as opposed to a single deposit, as in the previously discussed methods, to ensure 
product and quality requirements are respected while maximizing NPV. 

The above previously discussed stochastic optimization methods aim to maximize 
the value of the mine by maximizing the economic value of the blocks extracted under an 
uncertain material supply. These economic values are determined prior to the optimiza-
tion process under the assumption that each block will be processed individually, ignor-
ing transformations caused by the blending and nonlinear interactions of materials. The 
simultaneous stochastic optimization (SSO) approach shifts the focus from the maximiza-
tion of the economic values of blocks to the maximization of the value of the final product 
generated by the mining complex. This allows the approach to account for the effects of 
the blending and nonlinear interactions of materials on the products generated. Montiel 
and Dimitrakopoulos [1,2] present a model for the simultaneous stochastic optimization 
of mining complexes, including production scheduling, destination policy, processing, 
operating modes at the processing facilities, and transportation alternatives under mate-
rial supply uncertainty. In addition, the approach considers material supply from under-
ground mines [22]. Goodfellow and Dimitrakopoulos [4,5] develop a generalized simul-
taneous stochastic optimization approach to jointly optimize the different components of 
a mineral value chain under geological uncertainty. The method easily accommodates dif-
ferent types of mining complexes of varying sizes and their relevant components, such as 
open-pit mines, stockpiles, processing facilities, waste dumps, and tailings dams. How-
ever, it does not directly incorporate operating modes, transportation alternatives, or ma-
terial supply from sources other than open-pit mines. This approach has been applied to 
different case studies incorporating market supply uncertainty [23], waste management 
[24], tailings management [25], and nonadditive attributes such as hardness [26]. In addi-
tion, the approach has been extended into a dynamic simultaneous stochastic optimizer 
to include capital investments [27,28]. Finally, Paithankar et al. [29] propose a model for 
the simultaneous stochastic optimization of extraction schedules and cut-off grades con-
sidering grade uncertainty and stockpiling. 

The work herein presents a case study of SSO [4,5] at the Rosebel Gold Mines (RGM) 
mining complex in Suriname, owned by the IAMGOLD Corporation. The case study con-
siders three RGM deposits for a total of 1.07 million blocks. The case study includes three 
stockpiles, a waste dump, and a processing facility. Each mine considers four material 
types, which are treated differently throughout the mineral value chain. The direct block 
simulation (DBSIM) method [30,31] is used to generate geostatistical simulations of gold 
grades within each deposit considered, representing the material supply uncertainty of 
the mining complex. The case study considers an elaborate haulage cost scheme to accu-
rately represent the costs related to transporting the materials from sources to destina-
tions. Finally, the case study integrates material hardness management at the semi-autog-
enous grinder (SAG) mill. In the subsequent sections, an overview of the SSO method is 
presented. Then, the case study at the above-mentioned gold mining complex demon-
strates the practical aspects of the SSO method. Conclusions follow. 
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2. Method 
The stochastic mathematical programming model for the simultaneous stochastic op-

timization [4] applied in the present study is outlined in this section. 

2.1. Definitions and Notation 
Throughout the mineral value chain, the materials are defined as the products ex-

tracted from mines and/or that are the results of blending, separation, or processing activ-
ities. These materials are described by attributes that represent their properties, such as 
mass or metal quantity. These attributes can be separated into two categories. Primary 
attributes (𝓅 ∈ 𝒫) are additive and can be passed on from one location to another; their 
value is denoted as 𝑣𝓅௜௧𝓈. Hereditary attributes (ℎ ∈ 𝐻) are of interest at a specific location; 
their value is denoted as 𝑣௛௜௧𝓈 = 𝑓௛௜൫𝑣𝓅௜௧𝓈൯. Hereditary attributes facilitate the inclusion of 
nonlinear transformation functions within the SSO framework. 

Material is obtained from the mines, 𝓂 ∈ 𝕄, by extracting a set of blocks, or selective 
mining units (SMU), 𝑏 ∈ 𝔹𝓂. Each block is assigned a bin or cluster, 𝒸 ∈ 𝒞, according to 
geological attributes such as grade and material type. Cluster membership is scenario-
dependent, 𝓈 ∈ 𝒮, and defines the destinations, 𝑖 ∈ 𝒪ሺ𝒸ሻ, to which extracted blocks can be 
sent; the destination policy is scenario-independent. The blocks are mined at a cost of 𝑚𝑐௕௧ = ௠௖್೟బሺଵା𝒹ሻ೟, where 𝒹 represents the economic discount rate. The set 𝕋 represents the 
number of scheduling periods or years, 𝑡 ∈ 𝕋. A block 𝑏 is eligible to be extracted if its 
set of predecessors according to the related slope constraints, 𝕆௕, is fully extracted. Mine-
ability constraints ensure that the schedules produced by the optimization process are 
feasible. As such, blocks within block 𝑏’s smoothing window, 𝕎௕, are subject to a penalty 

cost, 𝑐𝓂௧௦௠௢௢௧௛ = ௖𝓂೟బೞ೘೚೚೟೓ሺଵା௥ሻ೟ , applied to the number of blocks within the window mined in a 
different period than that of 𝑏. Additionally, a block 𝑏ത ∈ ℚ௕ lying at a certain vertical 
distance (i.e., the sink rate distance) above another block 𝑏 is subject to a penalty cost, 𝑐𝓂௧௦௜௡௞ = ௖𝓂೟బೞ೔೙ೖሺଵା௥ሻ೟, applied when the blocks 𝑏 and 𝑏ത are mined in the same period (further 
discussion of smoothing and sink rates can be found in Section 2.4). The total amount of 
material mined cannot exceed the mining capacity; any excess will incur a penalty cost, 𝑀𝐶௛௧ = ெ஼೓೟బሺଵା௥ሻ೟ . The extracted material is hauled to its destination 𝑖 ∈ 𝒪ሺ𝓂ሻ  at a cost of ℎ𝑐𝓂௜௧ = ௛௖𝓂೔೟బሺଵା𝒹ሻ೟. Material sent to a stockpile 𝑖 ∈ 𝕊 can be reclaimed at a cost of 𝑟𝑐௛௜௧ = ௥௖೓೔೟బሺଵା𝒹ሻ೟ 
and sent to an eligible destination, 𝑗 ∈ 𝒪ሺ௜ሻ. The material sent to a processor 𝑖 ∈ ℙ is pro-
cessed at a cost of 𝑝𝑐௛௜௧ = ௣௖೓೔೟బሺଵା𝒹ሻ೟. Deviations from quantity and quality constraints at the 

processor are penalized by 𝑐௛௜௧ା = ௖೓೔೟బశሺଵା௥ሻ೟ and 𝑐௛௜௧ି = ௖೓೔೟బషሺଵା௥ሻ೟, according to whether the devia-
tions exceed the bound or are in deficit, respectively. The deviation penalties are subject 
to the geological risk discount rate, 𝑟, which reduces their magnitude over time, effec-
tively deferring deviations to later periods (please see further comments in Section 2.3). 
The revenue generated by the final products delivered by the mining complex is repre-
sented by 𝑝௛௜௧ = ௣೓೔೟బሺଵା𝒹ሻ೟. 
2.2. Decision Variables 

The formulation proposed by Goodfellow and Dimitrakopoulos [4] defines four crit-
ical decisions variables. First, the scenario-independent binary block extraction decision 
variable, 𝑥௕௧, holds a value of one if block 𝑏 ∈ 𝔹𝓂 is extracted in period 𝑡 ∈ 𝕋, and holds 
a value of zero otherwise. Second, the processing stream decision variable, 𝑦௜௝௧𝓈, is a real 
number between zero and 1, indicating the proportion of material being sent from location 𝑖 ∈ 𝕊 ∪ ℙ to location 𝑗 ∈ 𝒪ሺ௜ሻ in period 𝑡 ∈ 𝕋 and scenario 𝓈 ∈ 𝒮. This decision variable 
is scenario-dependent as the model assumes that once the material is extracted and sent 
to a destination, its uncertainty is revealed. This assumption allows the processing stream 
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decision variables to adapt to each uncertainty scenario. Third, the scenario-dependent 
binary cluster membership variable, 𝜃௕𝒸𝓈, holds a value of one if block 𝑏 ∈ 𝔹𝓂 belongs 
to cluster 𝒸 ∈ 𝒞 in scenario 𝓈 ∈ 𝒮, and holds a value of zero otherwise. Finally, the sce-
nario-independent binary destination policy variable, 𝑧𝒸௝௧, holds a value of one if the clus-
ter 𝒸 ∈ 𝒞 is sent to destination 𝑗 ∈ 𝒪ሺ𝒸ሻ, and holds a value of zero otherwise. It is im-
portant to note that a cluster can be assigned to a single destination; however, multiple 
clusters can be assigned to the same destination. 

Additional decision variables include the scenario-dependent surplus, 𝑑௛௜௧𝓈ା , and de-
ficiency, 𝑑௛௜௧𝓈ି , variables. These represent the quantity exceeding an upper-bound target 
(𝑈௛௜௧) or the shortage from a lower-bound target (𝐿௛௜௧), respectively, for attribute ℎ ∈ 𝐻 at 
destination 𝑖 ∈ 𝕊 ∪ ℙ in period 𝑡 ∈ 𝕋 and scenario 𝓈 ∈ 𝒮. 

2.3. Objective Function 
The objective function (1) of the Goodfellow and Dimitrakopoulos [4] two-stage sto-

chastic integer programming model maximizes the expected profits of the products gen-
erated by the mineral value chain while minimizing the risks of failing to meet capacity, 
blending, and mineability requirements. 

max 1|𝒮| ෍ ෍ ⎝⎜
⎛෍ ෍ 𝑝௛௜௧𝑣௛௜௧𝓈௛∈ு௜∈ℙᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௉௔௥௧ ூ

− ෍ ෍ 𝑝𝑐௛௜௧𝑣௛௜௧𝓈௛∈ு௜∈ℙᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௉௔௥௧ ூூ
− ෍ ෍ ෍ ෍ ℎ𝑐𝓂௜௧𝑥௕௧𝜃௕௖𝓈𝑧௖௜௧௖∈𝒞௜∈𝒪ሺ𝓂ሻ௕∈𝔹𝓂𝓂∈𝕄ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ௉௔௥௧ ூூூ௧∈𝕋𝓈∈𝒮

− ෍ ෍ 𝑟𝑐௛௜௧𝑣௛௜௧𝓈௛∈ு௜∈𝕊ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௉௔௥௧ ூ௏
− 𝑀𝐶௧𝑑௧𝓈௠௜௡௘ᇣᇧᇧᇤᇧᇧᇥ௉௔௥௧ ௏ − ෍ ෍ 𝑃𝐶௛௜௧ା 𝑑௛௜௧𝓈௣௥௢௖௘௦௦௛∈ு௜∈ℙᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௉௔௥௧ ௏ூ

− ෍ ෍ 𝑆𝐴𝐺௛௜௧ା 𝑑௛௜௧𝓈ௌ஺ீ௛∈ு௜∈ℙᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௉௔௥௧ ௏ூூ ⎠⎟
⎞

− ෍ ෍ ෍ ⎝⎜
⎛𝑚𝑐௕௧𝑥௕௧ᇣᇧᇤᇧᇥ௉௔௥௧ ௏ூூூ + 𝑐𝓂௧௦௠௢௢௧௛𝑑௕௧௦௠௢௢௧௛ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௉௔௥௧ ூ௑ + ෍ 𝑐𝓂௧௦௜௡௞𝑑௕௕ത௧௦௜௡௞௕ത∈ℚ್ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௉௔௥௧ ௑ ⎠⎟

⎞
௕∈𝔹𝓂𝓂∈𝕄௧∈𝕋  

(1) 

Part I maximizes the revenues generated by the products produced. Parts II, III, IV, 
and VIII aim to minimize the cost of processing, hauling, reclaiming, and mining, respec-
tively. Parts V, VI, and VII minimize the deviations from mining, mineral processing, and 
SAG mill capacities, respectively, while Parts IX and X minimize deviations from smooth-
ing and sink rate constraints, respectively. The cashflows are subject to an established eco-
nomic discount rate, 𝒹, while the deviation penalty costs are subject to a geological risk 
discount rate, 𝑟 [32]. The geological risk discount rate reduces the magnitude of the pen-
alty cost over time, deferring the risk of failing to meet production requirements to later 
periods, when more information will become available. 

2.4. Constraints 
The objective function is subject to constraints, including reserve, slope, destination 

policy, and so on. Only select constraints of particular interest to the case study presented 
in this paper are presented; comprehensive definitions and explanations for the remaining 
constraints can be found in Goodfellow and Dimitrakopoulos [4]. The different processing 
streams of the mineral value chain can only accept certain material types based on their 
geometallurgical attributes. Each processing stream is subject to a capacity constraint; de-
viations from the capacity constraints are calculated using Equations (2) and (3) and are 
penalized in the objective function (1). Similarly, the material extracted from the mines is 
subject to the mining capacity (4). 
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𝑣௛௜௧𝓈 − 𝑑௛௜௧𝓈௣௥௢௖௘௦௦ ≤ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝐶𝑎𝑝   𝑡 ∈ 𝑇, 𝓈 ∈ 𝒮, 𝑖 ∈ ℙ, ℎ ∈ 𝐻 (2) 

𝑣௛௜௧𝓈 − 𝑑௛௜௧𝓈ௌ஺ீ ≤ 𝑆𝐴𝐺𝐴𝑣𝑎𝑖𝑙   ∀𝑡 ∈ 𝑇, 𝓈 ∈ 𝒮, 𝑖 ∈ ℙ, ℎ ∈ 𝐻 (3) 

∑ ∑ 𝑥௕௧ × 𝑡𝑜𝑛𝑛𝑎𝑔𝑒௕௕∈𝔹𝓂𝓂∈𝕄 − 𝑑௧𝓈௠௜௡௘ ≤ 𝑀𝑖𝑛𝑖𝑛𝑔𝐶𝑎𝑝   ∀𝑡 ∈ 𝑇, 𝓈 ∈ 𝒮  (4) 

In order to ensure a mineable schedule, a smoothing constraint (5) is applied. Based 
on the methodology presented in Dimitrakopoulos and Ramazan [32], a smoothing win-
dow, 𝕎௕, is defined centered around block 𝑏. The number of blocks that make up this 
window is defined according to a smoothing radius: All blocks whose centers reside 
within a certain distance of block 𝑏’s center are considered to be in block 𝑏’s smoothing 
window. Constraint (5) counts the number of blocks that are scheduled to be mined in a 
different period than that of block 𝑏; this number (𝑑௕௧௦௠௢௢௧௛) is then penalized in part VIII 
of the objective function (1). In addition, a sink rate constraint (6) also ensures a mineable 
schedule by limiting the mine’s vertical advance rate in any period. If a block 𝑏 is mined 
in the same period as the overlying block 𝑏ത ∈ ℚ௕, located at a distance equivalent to the 
sink rate plus the block’s length in the vertical direction, the deviation variable, 𝑑௕௧௦௜௡௞, 
takes on a value of one and is penalized in part IX of the objective function (1). |𝕎௕|𝑥௕௧ − ∑ 𝑥௕ത௧௕ത∈𝕎್ ≤ 𝑑௕௧௦௠௢௢௧௛   ∀𝓂 ∈ 𝕄, 𝑏 ∈ 𝔹𝓂, 𝑡 ∈ 𝕋 (5) 𝑥௕௧ + ∑ 𝑥௕ത௧௕ത∈ℚ್ − 𝑑௕௧௦௜௡௞ ≤ 1   ∀𝓂 ∈ 𝕄, 𝑏 ∈ 𝔹𝓂, 𝑡 ∈ 𝕋 (6) 

2.5. Solution Approach 
The simultaneous stochastic optimization of mining complexes requires a metaheu-

ristic solution approach due to the large number of decision variables that must be con-
sidered. The metaheuristic approach used in this work is the simulated annealing [33] 
extended to consider multiple perturbation neighborhoods and adaptive neighborhood 
search [2,4,5]. 

3. Case Study at a Gold Mining Complex 
3.1. Overview 

The SSO mathematical programming formulation described previously is applied to 
the Rosebel Gold Mines (RGM) mining complex in Suriname. The case study considers 
three deposits: Rosebel Mine, Pay Caro Mine, and Royal Hill Mine, as shown in Figure 1. 
Each deposit has four material types: Waste, laterite/saprolite, transition, and hard rock 
[34]. The extracted material can be sent to the processor, related stockpile, or waste dump. 
At the processor, constraints are considered on the material throughput at the SAG mill 
and on the total tonnage of material sent to the processor. 
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Figure 1. Material flow diagram at the gold mining complex considered in this case study. 

Each deposit consists of blocks of 16 × 12 × 9 m3, for a combined total of 1.07 million 
mining blocks: 0.26 million at Rosebel Mine, 0.38 million at Pay Caro Mine, and 0.43 mil-
lion at Royal Hill Mine. The material uncertainty is quantified using 10 stochastic simula-
tions of the gold grades per mine, for a total of 1000 uncertainty scenarios. Note that Albor 
and Dimitrakopoulos [35] determined that 10 to 12 simulations are sufficient to obtain a 
stable solution for the stochastic optimization of mining complexes. The simulated reali-
zations of the three deposits are generated using the direct block simulation (DBSIM) 
method [30,31]. Each deposit is separated into different geological domains that were sim-
ulated separately. 

The economic parameters used in the optimization process are listed in Table 1. The 
mining cost is separated into the drill and blast cost, loading cost, dump maintenance cost, 
and closure cost while the total processing cost is separated into processing cost, admin-
istration cost, and sustaining capital cost, to account for the different costs associated with 
the different material types. In addition, the haulage costs are separated from the mining 
costs to account for differences in the haulage distance from the different mineral deposits 
to the different processing stream destinations. For example, the Rosebel Mine is furthest 
from the processor and, therefore, has the highest transportation cost, while the Pay Caro 
Mine is closest and, therefore, has the lower transportation cost. Furthermore, an incre-
mental mining cost is included to account for the increased cost of mining deeper into 
each pit. Table 2 summarizes the targets for each component of the mineral value chain, 
including the stockpiles and processors. Table 3 denotes the mineability constraints ap-
plied to create smooth schedules. 

Table 1. Economic parameters. 

General Material-Dependent Mine-Dependent 
Economic Discount Rate Gold Recovery Rate Reclamation Cost 

Geological Risk Discount Rate Drill and Blast Cost Haulage Costs 
Gold Price Processing Cost Incremental Mining Cost 

Selling Cost Administration Cost  
Royalties Sustaining Capital Cost  

Loading Cost   
Dump Maintenance Cost   

Closure Cost   
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Table 2. Capacity constraints. 

Constraints Capacity 
Mining Capacity (years 1–5) 67.3 Mt/y 
Mining Capacity (years 6–18) 74.0 Mt/y 

SAG Mill Capacity 876 h/y 
Processing Capacity 8.83 Mt/y 

Table 3. Scheduling constraints. 

Constraint Distance 
Smoothness 48 m 

Max sink rate 63 m 

3.2. Results 
In the following figures, the results of the simultaneous stochastic optimization are 

represented, where applicable, by P10, P50, and P90. These represent the 10%, 50%, and 
90% probabilities, respectively, of obtaining values below the corresponding forecast. The 
results of the case study are scaled for confidentiality reasons. The mining complex has an 
18 year life, as shown in Figure 2 alongside the NPV results. Figure 3 presents the ore 
mined and the recovered gold over the life of the mining complex, and Figure 4 presents 
the tonnage mined throughout the long-term plan of the mining complex. Figure 5 shows 
the production schedules generated, which as noted in previous sections, comply with 
smoothing and sink rate constraints. Figures 6–8 present the ore tonnage mined and the 
recovered gold over the life-of-mine for Rosebel Mine, Pay Caro Mine, and Royal Hill 
Mine, respectively. 

 
Figure 2. Net present value of the Rosebel Gold Mines (RGM) mining complex. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

NP
V

Year

NPV
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Figure 3. Total ore tonnage mined and recovered gold from the three mines at the RGM mining complex. 

 
Figure 4. Total tonnage mined from the three mines at the RGM mining complex. 
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Figure 5. Stochastic life-of-asset production schedules at the three mines at the RGM mining complex. 

 
Figure 6. Ore tonnage mined and recovered gold at the Rosebel Mine. 
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Figure 7. Ore tonnage mined and recovered gold at the Pay Caro Mine. 

 
Figure 8. Ore tonnage mined and recovered gold at the Royal Hill Mine. 
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material is stockpiled to a greater extent, while the transition material is rarely stockpiled. 
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The ore that is reclaimed from the stockpiles or sent directly to the processor is crushed at 
the SAG mill. Each material type has a different throughput rate at the SAG mill, based 
on the material hardness. As such, a constraint is placed on the SAG mill availability, ra-
ther than on tonnage capacity (Figure 10). The SAG mill is used to capacity; however, the 
processor throughput capacity (Figure 11) and the mining capacity (Figure 4) are not 
reached throughout the long-term plan of the mining complex, documenting that the SAG 
mill is a bottleneck for the mining complex. 

 
Figure 9. Stockpiled material at the RGM mining complex. 
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Figure 10. Semi-autogenous grinder (SAG) mill utilization. 

 
Figure 11. Processor ore tonnage throughput. 
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and reclamation of the laterite-saprolite material (Figure 9) will assist the SAG mill utili-
zation. Regarding the source of the ore sent to the processor, the Royal Hill Mine provides 
most of the material, followed by the Pay Caro Mine, Rosebel Mine, and stockpile recla-
mation. Figure 13 shows the proportion of recovered gold by material type and source. 
Though the trends are similar to those shown in Figure 12, it can be noted that 92% of the 
gold is recovered from the hard rock material, while that material only constitutes 86% of 
the processor feed. The hard rock material has the lowest recovery rate of the three mate-
rial types, as well as the highest mining and processing costs. Similarly, 55% of the gold is 
recovered from Royal Hill ore, whereas Royal Hill ore makes up only 50% of the processor 
feed. This reflects the fact that Royal Hill’s material is richer in gold than the other depos-
its. Finally, Figure 14 presents the yearly cut-off grades obtained from the simultaneous 
stochastic optimization process, using Royal Hill’s hard rock material as an example. Note 
that the simultaneous stochastic optimization process determines the destination of the 
extracted material based on the material’s grade, aiming to maximize the operation’s 
NPV. Based on the assigned destinations, cut-off grades are then determined for each ma-
terial type extracted per year, as opposed to conventional mine planning optimization 
where cut-off grades are an input to the optimization process. 

 

  

Figure 12. Proportion of different material types (left) and material from different sources (right) at the processor. 
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Figure 13. Proportion of recovered gold from different material types (left) and sources (right). 

 
Figure 14. Royal Hill Mine cut-off grade policy. 
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three stockpiles considered. The resulting schedules also indicate that the Royal Hill de-
posit was solely responsible for the last three years of production of the RGM mining 
complex. The SAG mill was determined to be the bottleneck of the operation, with a 100% 
utilization rate throughout the life-of-mine. This was due to the hardness of the different 
material types. The hardest material, and therefore, the material with the lowest SAG 
throughput rate, was that with the highest grades and greatest presence in the deposits, 
causing the bottleneck. Future work could consider the incorporation of more components 
of the RGM mining complex, such as additional deposits and mine-to-mill transportation 
scheduling, as well as the incorporation of capital investment options to reduce the effect 
of the identified bottleneck. Future work could also consider stochastic simulations of the 
ore zone boundaries, as well as densities and hardness, to better represent the deposits 
and the utilization of the SAG mill. 
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