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Abstract
Mineral value chains, also known as mining complexes, involve mining, processing, 
stockpiling, waste management and transportation activities. Their optimization is 
typically partitioned into separate stages, considered sequentially. An integrated sto-
chastic optimization of these stages has been shown to increase the net present value 
of the related mining projects and operations, reduce risk in meeting production tar-
gets, and lead to more robust and coordinated schedules. However, it entails solving 
a larger and more complex stochastic optimization problem than separately optimiz-
ing individual components of a mineral value chain does. To tackle this complex 
optimization problem, a new matheuristic that integrates components from exact 
algorithms (relaxation and decomposition), machine learning techniques (reinforce-
ment learning and artificial neural networks), and heuristics (local improvement and 
randomized search) is proposed. A general mathematical formulation that serves as 
the basis for the proposed methodology is also introduced, and results of computa-
tional experiments are presented.

Keywords Mineral value chains · Mining complexes · Stochastic simultaneous 
optimization · Large-scale optimization · Matheuristics · Decomposition

1 Introduction

Production scheduling (PS) and downstream optimization (DO) are two classi-
cal problems in mine planning. Production scheduling concerns strategic aspects, 
such as designing a mining sequence over the life-of-the-mine, while downstream 
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optimization deals with the material flow aspect and assumes that strategic deci-
sions have already been made. These two problems have been intensively stud-
ied in the mining literature. However, although the two problems are closely 
related, most studies focus on only one of them, leaving behind the benefits of 
coordinating and integrating mine planning decisions. The joint optimization of 
PS and DO while explicitly accounting for uncertainty (geological and/or finan-
cial), henceforth referred to as the simultaneous stochastic optimization of mining 
complexes (SSOMC), has received little attention despite its practical relevance, 
one main reason being computational complexity. Recently, there has been some 
work done, but the literature is still sparse. This paper aims to fill this gap.

As for what has been done, Goodfellow and Dimitrakopoulos (2016) intro-
duced a mathematical model that specifically addresses the optimization of 
mining complexes under geological uncertainty. The authors employed a multi-
neighborhood simulated annealing algorithm to solve the problem. The algorithm 
uses three neighborhoods. The first neighborhood changes the period in which 
a block is extracted, the second changes the destination of a cluster of blocks, 
and the third one modifies the amount of material sent from one processor to 
another. The authors compared the proposed algorithm to two other methods that 
combine multi-neighborhood simulated annealing with particle swarm and dif-
ferential evolution, respectively. The latter proved to be more efficient, but also 
more computationally expensive. Multi-neighborhood simulated annealing was 
further studied in Montiel and Dimitrakopoulos (2015), Montiel et  al. (2016), 
and Montiel and Dimitrakopoulos (2018). In the first paper, the authors simul-
taneously optimize mining, processing, and transportation decisions. The initial 
solution is improved by shifting a single block to another period, changing the 
operating mode in a processor, and changing the transportation arrangement in a 
processor. In the other two papers, the model and the algorithms are designed to 
handle mining complexes with multiple mines. Del Castillo and Dimitrakopoulos 
(2019) investigated a similar problem but in which capital expenditure decisions 
are included. There are some studies that considered exact methods. Zhang et al. 
(2019) studied mining complexes under market uncertainty. They combined clas-
sical Benders decomposition with aggregation techniques to reduce the size of 
the problem so that the resulting model is of tractable size and can be solved by 
the proposed method.

Nearly all papers on SSOMC, except the one above by Zhang et  al. (2019), 
employ metaheuristics, mainly multi-neighborhood simulated annealing, to meet the 
challenges of scale, complexity, and uncertainty in optimizing mining complexes. In 
this paper, a different approach, namely a new matheuristic, is introduced. The pro-
posed methodology capitalizes on the synergies between artificial intelligence and 
optimization techniques and integrates components from exact algorithms (relaxa-
tion and decomposition), machine learning techniques (reinforcement learning 
and artificial neural networks), and heuristics (local improvement and randomized 
search).

The remainder of the paper is divided into four sections. Section 2 gives a formal 
mathematical description of the problem studied. The proposed solution procedure 
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is described in Sect. 3. Numerical results are reported in Sect. 4. Section 5 provides 
conclusions and directions for future research.

2  Problem description and formulation

2.1  Problem description

A typical mining complex (mineral value chain) consists of multiple mines that 
provide material to multiple downstream facilities where the supply is blended and 
transformed into final sellable products. A downstream facility could be a stockpile, 
a crusher, a mill, a concentrator, a leach pad, a refinery, a waste dump, etc. and the 
output from one facility may be used as an input for another facility. In this general 
context, three kinds of decisions must be made in each period of the planning hori-
zon: whether or not to mine a block (extraction decisions), where to send extracted 
blocks (first-stage destination decisions), and how to route the flow from the facil-
ities fed by the mines to the facilities where final sellable products are produced 
(routing decisions). The constraints to be taken into account can be grouped into 
four main classes: precedence constraints, resource constraints, blending constraints, 
and flow conservation constraints. The information about blocks’ mineral properties 
required for decision making is not known with certainty a priori, but only approxi-
mately in the form of equiprobable geological realizations (scenarios) of the orebod-
ies. Such realizations are used to derive a robust solution that is well-hedged against 
uncertainty and where the risk of not meeting production targets is minimized.

In this paper, while extraction decisions are made at the block level, first-stage 
destination decisions are made at an aggregate level based on a clustering method 
similar to that proposed in Goodfellow and Dimitrakopoulos (2016). More spe-
cifically, in a pre-processing step, blocks’ mineral properties are used to measure 
blocks’ similarities and partition them into G subsets, henceforth called groups. We 
then refer to block i being in group g under geological scenario s when its mineral 
properties under that scenario fall into that group. Grouping blocks to define first-
stage destinations is interesting from a practical point of view as it provides the mine 
planners with guidelines for what cut-off grade they should operate with for each 
year. It is also useful computationally, as it significantly reduces the size of the opti-
mization problem and consequently the computational burden of solving it but at the 
cost of a loss in selectivity. The selectivity drawback can be overcome by setting G 
to high values close to the number of blocks.

A mathematical formulation of the optimization problem described above is pre-
sented in the next section.

2.2  Problem formulation

The following notation is used to formulate the problem.
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Sets

• T  : Set of time periods, indexed by t.
• B : Set of blocks, considering all mines in the mining complex (mineral value 

chain), indexed by b.
• Pb ⊂ B : Set of immediate predecessors of block b , indexed by b′.
• S : Set of scenarios modelling geological uncertainty, indexed by s. Scenarios are 

multiple equiprobable geological realizations of the orebody, describing the uncer-
tain geology and accurately reproducing the spatial statistics of the drillhole data.

• G : Set of groups, indexed by g . Recall that the groups are defined based on the min-
eral properties of all blocks in the different mines, considering all geological sce-
narios.

• A : Set of attributes or specificities to be tracked across the mineral value chain, 
indexed by a.

• M ⊂ A : Set of final sellable products (minerals), indexed by m.
• Ra ⊂ A : Set of attributes whose proportion relatively to the proportion of attribute 

a has to be controlled, indexed by a′.

To characterize the downstream part of the mining complex that goes from the first-
stage facilities fed from the mines where blocks are first mixed, to intermediate facili-
ties where material is further mixed and processed, to last-stage facilities where final 
sellable products are recovered, an acyclic direct graph is used. Nodes represent any 
downstream facility, and arcs between two nodes define an existing flow. The following 
notation is used to define the graph.

• I  : Set of nodes associated with first-stage facilities, indexed by i.
• L : Set of nodes associated with last-stage facilities, indexed by l.
• N = I ∪ J ∪ L : Set of all nodes, indexed by n. Therefore, a node j ∈ J  is associ-

ated with neither a first-stage facility nor a last-stage facility. It is associated with an 
intermediate facility.

• A : Set of arcs. An arc (i, j) exists only if facility i can potentially send 
material to facility j . Without loss of generality, we assume that 
A ⊆ (I × J) ∪ (J × J) ∪ (J × L) ∪ (I × L)

Parameters

• wb : Weight of block b(tonnage).
• �s

ab
 : Grade of attribute a in block b under scenario s . The grade is defined to be the 

proportion of attribute to rock.
• �s

bg
=

{
1 if block b belongs to group g under scenario s

0 otherwise

Recall that groups g ∈ G are disjoint and are defined based on the blocks’ mineral 
properties. Therefore, for a given scenario, a block cannot appear in different groups; 
that is, 

∑
g∈G �

s
bg

= 1∀b ∈ B, s ∈ S. However, if we consider all scenarios, a block 
might appear in multiple groups; that is,
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• �gi =

{
1 if group g is eligible for node i ∈ I

0 otherwise.

 Recall that each i ∈ I  is associated with one first-stage facility. An available 
(extracted) block cannot be sent to just any first-stage facility. It can go only to a 
predetermined subset of facilities depending on the block’s material type and also 
on the mine from which the block has been extracted. The parameter �gi is used to 
identify such subset.

• Wt : Maximum amount of material that can be mined in period t.
• Ct

n : Maximum amount of material that can be processed at node 
n ∈ N = I ∪ J ∪ L in period t (capacity of node n).

• Pt
al

 : Upper limit (bound requirement) on the proportion (level) of attribute a at 
node l ∈ L in period t.

• Rt
aa′l

 : Upper limit on the proportion of attribute a relative to attribute a′ at node 
l ∈ L in period t.

• rt
ml

 : Recovery of final sellable product m ∈ M at node l ∈ L during period 
t
(
rt
ml

∈ [0, 1]
)
. Recall that the set of final sellable products M is a subset of the 

set of attributes A . The recovery represents the amount of output of attribute m 
obtained for each ton of input of m.

• ct
b
 : Per-unit cost of mining block b in period t.

• ct
ij
 : Per-unit cost of processing material at node j and/or transporting material on 

arc (i, j) ∈ A.
• �ts+

n  : Unit surplus cost incurred if the amount of material received at node 
n ∈ N = I ∪ J ∪ L during period t exceeds the capacity Ct

n
 of that node during 

that period.
• ct+

al
 : Unit surplus cost incurred if the proportion of attribute a in node l ∈ L 

exceeds Pt
al

 during period t.
• ct+

aa�l
 : Unit surplus cost incurred if the proportion of attribute a relative to that of 

a′ in node l ∈ L exceeds Pt
aa′l

 during period t.
• �t

m : Per-unit profit from selling final sellable product (mineral) m in period t , 
defined as being the revenue minus the selling cost.

Decision variables

• For each block b ∈ B and each period t ∈ T  , we define the following binary var-
iables:

• For each group g ∈ G, each node i ∈ I  (associated with a first-stage facility) and 
each period t ∈ T  , we define the following binary variables:

∑

s∈S

∑

g∈G

�s
bg

≥ 1 ∀b ∈ B.

xt
b
=

{
1 if block b is mined in period t

0 otherwise.
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As discussed in Sect. 2.1, variables � t
gi

 control the cut-off grade applied at i during 
period t.

Other decision variables in the formulation are the following:

• yts
ij
 : Flow of material on arc (i, j) in period t under scenario s.

• Δts+
n  : Surplus in the amount of material received at node n ∈ N  in period t under 

scenario s. Recall that the set of nodes N  comprises nodes associated with first-
stage facilities i ∈ I  , with intermediate facilities node j ∈ J , and with last-stage 
facilities l ∈ L.

• pts
aj

 : Proportion value (grade) of attribute a ∈ A in material leaving node j ∈ I
⋃

J  
at period t under scenario s.

• δts+
al

 : Surplus in quantity of attribute a in node l ∈ L in period t under scenario s 
(before considering the arriving material).

• dts+
aa�l : Surplus in the proportion of quantity of attribute a ∈ A compared to the quan-

tity of attribute a� ∈ Ra in node l ∈ L in period t under scenario s (before consider-
ing the arriving material).

To simplify the presentation, we introduce the following three variables, although 
not necessary:

• �ts
i
 : Quantity of material (rock) supplied from the mines to node i ∈ I  at period t 

under scenario s.
• �ts

ai
 : Proportion value (grade) of attribute a ∈ A in material supplied from the mines 

to node i ∈ I  during period t under scenario s.
• ots

m : Quantity produced of sellable product (mineral) m ∈ M in period t under sce-
nario s.

Denote by � the random data vector (uncertain parameters) and by �(s) one of its 
particular realizations. Assuming that all the scenarios are equiprobable, the two-stage 
stochastic formulation of the problem can be written as follows:

Subject to

� t
gi
=

{
1 if blocks in group g are sent to destination i in period t

0 otherwise.

(1)max f (x, �) = −
∑

t∈T

∑

b∈B

ct
b
xt
b
+

1

S

∑

s∈S

Q(x, �, �(s))

(2)
∑

t∈T

xt
b
≤ 1 ∀b ∈ B

(3)xt
b
≤

t∑

�=1

x�
b�

∀b ∈ B, b� ∈ Pb, t ∈ T
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where Q(x, �, �(s)) is the optimal value of the following problem (second-stage 
problem):

Subject to

(4)
∑

b∈B

wbx
t
b
≤ Wt ∀t ∈ T

(5)
∑

i∈I

� t
gi
= 1 ∀g ∈ G, t ∈ T

(6)� t
gi
≤ �gi ∀g ∈ G, i ∈ I, t ∈ T

(7)xt
b
∈ {0, 1} ∀b ∈ B, t ∈ T

(8)� t
gi
∈ {0, 1} ∀g ∈ G, i ∈ I, t ∈ T

(9)

Q(x, �, � (s)) = max

∑

t∈T

{
−

∑

(i,j)∈A

ct
ij
yts
ij
−
∑

n∈N

�t+
n
Δts+

n
−
∑

a∈A

∑

l∈L

ct+
al
�ts+
al

−
∑

a∈A

∑

a�∈Ra

∑

l∈L

ct+
aa� l

dts+
aa� l

+
∑

m∈M

�t
m
ots
m

}

(10)
∑

g∈G

∑

b∈B

�s
bg
wbx

t
b
� t
gi
= �ts

i
∀i ∈ I, t ∈ T

(11)�ts
i
=

∑

j∈J∪L

yts
ij

∀i ∈ I, t ∈ T

(12)
∑

i∈I∪J

yts
ij
=

∑

l∈J∪L

yts
jl

∀j ∈ J, t ∈ T

(13)�ts
i
− Δts+

i
≤ Ct

i
∀i ∈ I, s ∈ S

(14)
∑

i∈I∪J

yts
ij
≤ Ct

j
∀j ∈ J ∪ L, t ∈ T

(15)
∑

g∈G

∑

b∈B

�s
bg
�s
ab
wbx

t
b
� t
gi
= �ts

ai
�ts
i

∀a ∈ A, i ∈ I, t ∈ T

(16)
∑

i∈I

�ts
ai
yts
ij
+
∑

j�∈J

pts
aj�
yts
j�j
= pts

aj

∑

i∈I∪J

yts
ij

∀a ∈ A, j ∈ J ∪ L, t ∈ T

(17)pts
al
− �ts+

al
≤ Pt

al
∀a ∈ A, l ∈ L, t ∈ T
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The objective function (1) minimizes the first-stage mining costs and maximizes 
the expected second-stage profit. The objective function of the second-stage (9) con-
sists of five parts: the processing and transportation costs (first term), the penalty 
costs (second, third, and fourth terms), and the revenues from the minerals (final 
products) produced (fifth term). It is assumed that all minerals produced in period t 
can be sold in the same period. Penalties are incurred for failing to meet the require-
ments of the downstream facilities. Indeed, given that the blocks are sent as groups 
to first-stage facilities, it might be impossible to respect the facilities’ capacity for 
certain realizations. Therefore, an additional cost (second term) is included to penal-
ize surplus. Similarly, given that it might be impossible to meet upper bounds on 
the grades and proportions for certain realizations of the uncertain parameters, addi-
tional cost terms are included to penalize surplus in the attributes that need to be 
controlled (third and fourth term).

Constraints (2–8) define the feasible set of the first-stage variables. More spe-
cifically, constraints (2) ensure that a block is mined at most once while con-
straints (3) prevent a block from being mined before its predecessors. Constraints 
(4) impose maximal mining level at each period. Constraints (5) allow a group 
of blocks to be sent to one first-stage facility only if it is eligible for this facility 
[constraints (6)].

Constraints (10) link the first-stage variables to the second-stage variables. 
More specifically, they define the total tonnage available at each first-stage facil-
ity under each scenario. Constraints (11) ensure that the supply from the mines is 
transported to a downstream facility. Constraints (12) are the flow balance at each 
intermediate facility. The total quantity in a facility at each period can be at most 
the facility capacity as specified by constraints (13) and (14). Surplus is allowed 
but at the expense of an additional cost.

Constraints (15) define the grade of each attribute at each first-stage facility; that 
is, in the material supplied from the mines. Constraints (16) are similar and apply to 
the intermediate and last-stage facilities. Recall that the grade is the proportion of 
the attribute to rock. The grade pts

aj
 of attribute a in node j under scenario s at the end 

of period t is thus a variable that depends on the amount of this attribute and the 
amount of rock sent to this node from the nodes of the previous stage. Also, recall 
that for each node associated with a first-stage or intermediate facility, the amount of 
input attribute and the output attribute are equal. Given these considerations, pts

aj
 of 

the material leaving node j can be calculated as follows:

(18)pts
al
− dts+

aa�l
≤ Rt

aa�l
pts
a�l

∀a ∈ A, a� ∈ Ra, l ∈ L, t ∈ T

(19)ots
m
=
∑

l∈L

pts
ml

∑

i∈I∪J

yts
il

∀m ∈ M, l ∈ L, t ∈ T

(20)y, p,�, �, o,Δ+, �+, d+ ≥ 0
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These equations simplify to the bilinear constraints (16).
Constraints (17) ensure that the proportion of each attribute in the combined 

material in each last-stage facility lies below a specific level, and if not, a penalty 
cost is incurred. Note that an attribute can be a pollutant, and thus these constraints 
handle sustainability constraints at waste dumps, tailings and slags, for example. 
Constraints (18) are similar and deal with the proportion of an attribute a relative 
to another attribute a� ∈ Ra . Constraints (19) define the amount of each mineral 
produced at each period under each scenario at the final nodes. Finally, constraints 
(20) are the non-negativity constraints. Indices are omitted. Although in this paper 
we assume that the arcs have unlimited capacities, limits on the flows can be easily 
accommodated without any added conceptual difficulties.

In the next section, the algorithmic strategy for addressing the intrinsic difficul-
ties of problem (1)–(20); i.e., non-linear constraints, complex objective function, 
and large size, is detailed.

3  Matheuristic

3.1  General structure of the algorithm

As mentioned in Sect. 1, to tackle the SSOMC, a matheuristic that exploits math-
ematical programming techniques and machine learning techniques in a heuristic 
framework is used. Within this algorithmic framework, the problem is separated 
into two sub-problems. The first one, referred to as the upstream sub-problem, deter-
mines a mining sequence; that is, which blocks to extract at each period of the life-
of-the-mine. Given a mining sequence, the second sub-problem, referred to as the 
downstream sub-problem, determines where to send the extracted blocks and the 
most profitable way to mix them so as to meet the different processing facilities’ 
capacities and blending requirements, as well as production targets. The two sub-
problems are iteratively solved until a stopping criterion is met.

Solving the upstream sub-problem involves modifying the mining sequence to 
explore different parts of the solution space. This is done using the hyper-heuristic 
proposed in Lamghari and Dimitrakopoulos (2020) that uses a set of 27 simple per-
turbative low-level heuristics and a score-based learning mechanism along with a 
tabu list to select the low-level heuristic to apply at each step of the solution process. 
To evaluate the mining sequences generated by the selected low-level heuristic, the 
downstream sub-problem, whose formulation involves binary variables and bilinear 
terms, must be solved. This is done by using an exact algorithm inspired by Benders 
decomposition (Benders 1962). The original downstream sub-problem is reformu-
lated into a master problem and a series of blending sub-problems. The master is a 
relaxation of the original problem in which McCormick envelopes are used to relax 
the bilinear terms and valid inequalities are used to strengthen the resulting linear 

(21)pts
aj
=

∑
i∈I�

ts
ai
y
ts

ij
+
∑

j�∈Jp
ts
aj�
y
ts

j�j∑
i∈I

⋃
Jy

ts
ij
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formulation. At each iteration of this decomposition algorithm, the master problem 
is solved to obtain an upper bound on the optimal objective function value; then the 
blending sub-problems are solved by holding the master binary variables fixed to 
compute a lower bound and generate an optimality cut. This cut is added to the mas-
ter, and the process is repeated until a threshold optimality gap is reached. As for the 
upstream sub-problem, machine learning techniques are also exploited when solving 
the downstream sub-problem. More specifically, in order to speed up the computa-
tional times, an artificial neural network surrogate is used instead of the decomposi-
tion algorithm to approximate the objective function values and identify the best 
neighbor solutions generated by the upstream low-level heuristic. The decomposi-
tion algorithm is then employed only for these solutions, and its output is used to 
update the scores of the low-level heuristics and the training set of the neural net-
work for the next iteration.

A more detailed description of the procedures proposed to solve the downstream 
sub-problem is provided in the following section. Details about the algorithm for 
solving the upstream sub-problem can be found in Lamghari and Dimitrakopoulos 
(2020).

3.2  Solving the downstream sub‑problem

Let x = (x
t

b
) be a mining sequence generated by the hyper-heuristic. Denote by:

• wts
g
=
∑

b∈B�
s
bg
wbx

t

b the total tonnage of material that belongs to group g under 
scenario s , available at period t

• �ts
ag

=

∑
b∈B�

s
bg
wbx

t

b

wts
g

 , the grade of attribute a in the material that belongs to group g 
under scenario s , available at period t.

Evaluating the objective function f (x ) involves identifying the flow of the 
extracted material through the downstream part of the mining complex; i.e., solving 
the downstream sub-problem. Assuming that there are no stockpiles that link the 
periods to each other, the sub-problems associated with the periods can be solved 
independently. Therefore, for notational simplicity, we drop the subscript designat-
ing the period in the rest of this section. All variables and parameters should be 
understood as related to a particular period t.

The sub-problem associated with a period t , which we will refer to as DP, can 
informally be defined as follows: Given a set of groups (raw material with differ-
ent properties) characterized by scenario-dependent tonnages and attribute levels 
( ws

g
 and �s

ag
 , respectively) that have to be first mixed in first-stage facilities ( i ∈ I  ), 

then in intermediate facilities ( j ∈ J  ), and finally sent forth from the intermediate 
facilities to be mixed again at last-stage facilities ( l ∈ L ) to recover final sellable 
products, what is the most profitable way to mix these groups so as to meet to the 
best extent possible the different facilities’ capacities as well as the attribute require-
ments at the last-stage facilities?

The DP can be viewed as a stochastic variant of the well-known pooling 
problem, which is a generalization of the blending problem (Gupte et al. 2017). 
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Different formulations have been proposed in the literature for the pooling prob-
lem, one of which is extended below to account for the specificities and handle 
the features of the problem addressed in this paper. It is based on that proposed 
by Haverly (1978) and uses the so-called quality variables that control the con-
centration of each attribute in the material leaving each facility, which lead to a 
non-linear formulation. In what follows, we first provide the mathematical model 
and then its linear relaxation. In addition to the pooling problem requirements 
and restrictions, binary variables are required to model the flow of materials in 
first-stage facilities and scenario-dependent variables are required to account for 
the stochastic nature (uncertainty) of supply.

3.2.1  Mathematical formulation

We seek to maximize the expected profit; that is, the expected revenue from 
the final sellable products minus the total expected cost, which is the sum of 
the expected transportation and processing costs at the first-stage, intermediate 
and last-stage facilities and of the expected penalty costs incurred whenever the 
capacity, blending, and ratio constraints are violated. Using the same notation as 
in the previous section (Sect. 2) omitting the t  subscript, the objective function 
can be expressed as follows:

The constraints are as follows:

1. First-stage facilities constraints: This set of constraints ensures that each group 
g ∈ G is sent to exactly one single first-facility for which it is eligible:

2. Flow conservation constraints: These constraints ensure that the amount entering 
and leaving each first stage facility i ∈ I  and each intermediate facility j ∈ J  
under each scenario s ∈ S are the same:

(22)

max
1

S

∑

s∈S

{
∑

m∈M

�mo
s
m
−

∑

(i,j)∈A

cijy
s
ij
−
∑

j∈N

�+
j
Δs+

j
−
∑

a∈A

∑

l∈L

c+
al
�s+
al

−
∑

a∈A

∑

a�∈Ra

∑

l∈L

c+
aa�l

ds+
aa�l

}

(23)
∑

i∈I

�gi = 1 ∀g ∈ G

(24)�gi ≤ �gi ∀g ∈ G, i ∈ I

(25)
∑

g∈G

ws
g
�gi =

∑

j∈J∪L

ys
ij

∀i ∈ I, s ∈ S

(26)
∑

i∈I∪J

ys
ij
=

∑

l∈J∪L

ys
jl

∀j ∈ J, s ∈ S
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3. Capacity constraints: These constraints limit the quantity received at each facility 
n ∈ N  under each scenario s ∈ S to the facility’s capacity; otherwise, an extra 
cost �+

n
Δs+

n
 is incurred:

4. Grade definition at the first-stage and intermediate facilities: Assuming that at 
least one group whose tonnage is non-null has been sent to first-stage facility 
i ∈ I  (i.e., that 

∑
g∈G

ws
g
�gi ≠ 0 ) and that the mixing process follows a linear blend-

ing, the grade of attribute a ∈ A in the material leaving node i under scenario s 
is given by1:

This expression can be equivalently rewritten in a bilinear form as:

which can also be rewritten, given constraints (25), as follows:

Similarly, at the intermediate facilities j ∈ J , we have:

which can also be rewritten as follows, considering constraints (26):

(27)
∑

j∈J∪L

ys
ij
− Δs+

i
≤ Ci ∀i ∈ I, s ∈ S

(28)
∑

l∈J∪L

ys
jl
− Δs+

j
≤ Cj ∀j ∈ J, s ∈ S

(29)
∑

i∈I∪J

ys
il
− Δs+

l
≤ Cl ∀l ∈ L, s ∈ S

ps
ai
=

∑
g∈G �

s
ag
ws
g
�gi

∑
g∈G w

s
g
�gi

.

(30-a)
∑

g∈G

�s
ag
ws
g
�gi = ps

ai

∑

g∈G

ws
g
�gi ∀a ∈ A, i ∈ I, s ∈ S

(30-b)
∑

g∈G

�s
ag
ws
g
�gi = ps

ai

∑

j∈J∪L

ys
ij

∀a ∈ A, i ∈ I, s ∈ S

(31-a)
∑

i∈I

ps
ai
ys
ij
+
∑

j�∈J

ps
aj�
ys
j�j
= ps

aj

∑

i∈I∪J

ys
ij

∀a ∈ A, j ∈ J, s ∈ S

(31-b)
∑

i∈I

ps
ai
ys
ij
+

∑

j�∈J

ps
aj�
ys
j�j
= ps

aj

∑

l∈J∪L

ys
jl

∀a ∈ A, j ∈ J, s ∈ S

1 Note that, in this paper, it is assumed that the recovery factor at the first-stage and intermediate facili-
ties is equal to 1, while it is smaller than 1 in the last-stage facilities. Different values for the recovery 
factor can be easily accommodated without any added conceptual difficulties.
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5. Blending constraints: These constraints model the mixing process requirements at 
each last-stage facility l ∈ L . Constraints (32) limit the grade of attribute a ∈ A in 
the material received at l to the facility’s upper bound, Pal , making it impossible 
to have more than what would exceed this upper bound unless a unit cost of c+

al
 is 

paid. Constraints (33) model the ratio requirements, ensuring that in the material 
processed at l , the ratio between attribute a ∈ A to related attribute a� ∈ Ra does 
not exceed the upper bound Raa′l ; otherwise, a cost c+

aa�l
 has to be paid for each 

unit in surplus:

6. Quantities produced: The amount produced of each sellable final product 
m ∈ M ⊂ A under each scenario s ∈ S is given by the total amount recovered in 
the different last-stage facilities:

7. Integrality and non-negativity constraints:

3.2.2  Linear relaxation of the bilinear terms

The problem described in Sect. 3.2.1 is a stochastic variant of the pooling problem, 
which is a nonconvex, strongly NP-hard bilinear problem (Gupte et al. 2017). It can 
be relaxed by linearizing the bilinear terms in constraints (30)–(34). Recall that the 
bilinear constraints defining the grade at first-stage and intermediate facilities can be 
written in two different forms. For first-stage facilities i , constraints (30-a) will be 
used instead of constraints (30-b) as the former allow an exact linearization as 
explained next.2 For intermediate facilities j , constraints (31-b) will be used instead 
of (31-a) in order to have all the non-linearities in the model in the form ps

ai
ys
ij
 (using 

constraints (31-a) would introduce bilinear terms of the form ps
aj
ys
ij
 ). Before describ-

ing the proposed linear relaxation techniques, some extra notation and definitions 
that will be used through this section to facilitate further discussions must first be 
introduced.

(32)
∑

i∈I

ps
ai
ys
il
+
∑

j∈J

ps
aj
ys
jl
− �s+

al
≤ Pal

∑

i∈I∪J

ys
il

∀a ∈ A, l ∈ L, s ∈ S

(33)

∑

i∈I

ps
ai
ys
il
+
∑

j∈J

ps
aj
ys
jl
− ds+

aa�l
≤ Raa�l

(
∑

i∈I

ps
a�i
ys
il
+
∑

j∈J

ps
a�j
ys
jl

)
∀a ∈ A, a� ∈ Ra, l ∈ L, s ∈ S

(34)os
m
=
∑

l∈L

rml

(
∑

i∈I

ps
mi
ys
il
+
∑

j∈J

ps
mj
ys
jl

)
∀m ∈ M, s ∈ S

(35)�gi ∈ {0, 1} and y, p, o,Δ+, �+, d+ ≥ 0.

2 Recall that the bilinear terms in (30-a) are the product of a binary and a continuous variable as opposed 
to the product of two continuous variables in (30-b).



 A. Lamghari et al.

1 3

For every facility j ∈ I
⋃

J  , let Gj be the subset of groups that might end up 
being processed at j . This means that for intermediate facilities j ∈ J,,Gj = {g ∈ G ∶ 
there exists at least a first-stage facility i ∈ I  to which g is eligible and from which 
there exists a path in the graph to j} , while for first-stage facilities i ∈ I  , Gj reduces 
to the subset of groups eligible to i ( Gj = {g ∈ G ∶ �gi = 1} ). Also, for every attrib-
ute a ∈ A , every facility j ∈ I

⋃
J , and every scenario s ∈ S , let Λs

aj
= ming∈Gj

�s
ag

 
be a lower bound on the grade of attribute a in the material leaving j under scenario 
s . Note that this lower bound is valid since the flow leaving j originates at the groups 
g ∈ Gj . The upper bound is denoted by Λs

aj
= maxg∈Gj

�s
ag

 . Finally, for each arc 
(i, j) ∈ A and each scenario s ∈ S , define Ys

ij
=
∑

g∈Gi
ws
g
 to be an upper bound on the 

flow along arc (i, j). 3 We assume the lower bound on flow on arc (i, j) to be zero (i.e., 
Ys
ij
= 0∀(i, j) ∈ A, s ∈ S).
Using the notation above, constraints (30-a) can be linearized by substituting 

every bilinear term ps
ai
�gi with a new variable us

agi
 and adding the following 

constraints:

This way, if �gi is zero, then inequalities (36-a) and (36-d) ensure that us
agi

 will be 
zero as well, and the other inequalities are redundant. On the other hand, if �gi is 
equal to 1, inequalities (36-b) and (36-c) imply that us

agi
 will be ps

ai
 , exactly as 

required. Note that in this case, inequality (36-a) is redundant since it ensures that 
us
agi

= ps
ai

 is less than Λs
ai
= maxg∈Gi

�s
ag

 , which is true by definition.
The standard McCormick approximation (McCormick 1976) can be used to relax 

the bilinear terms in constraints (31-b) and (32)–(34), therefore obtaining a Mixed 
Integer Linear Programming Problem. This approach consists of introducing new 
variables and adding linear constraints that tie these variables close to the bilin-
ear terms that they replace. More precisely, any bilinear termxy , where x ∈ [x, x] 
andy ∈ [y, y] , is replaced by a new variablev . This new variable is linked to the vari-
ables x and y via the following set of constraints:

(36-a)us
agi

≤ Λs
ai
�gi

(36-b)us
agi

≤ ps
ai

(36-c)us
agi

≥ ps
ai
− (1 − �gi)Λ

s
ai

(36-d)us
agi

≥ 0

3 Note that upper bound on the flow from i  to j cannot be defined as Ys
ij
= min{

∑
g∈Gi

ws
g
,Ci,Cj} because 

the capacity constraints are modelled as soft constraints (cf. constraints (27)–(29)), and thus the flow on 
arc (i, j) might exceed the facilities’ capacity.



1 3

A matheuristic approach for optimizing mineral value chains…

It is worth noting that the tightness of the relaxation depends on the tightness 
of the bounds of the variables. It has been shown in Androulakis et  al. (1995) 
that the maximum difference between the variable v and the bilinear term xy is 
dmax =

1

4
(x − x)(y − y) . This explains why constraints (30-a) were chosen over con-

straints (30-b) to model the grade definition constraints at first-stage facilities.
Without loss of generality, consider the bilinear terms ps

ai
ys
ij
 in constraints (31-b). 

Using the notation introduced at the beginning of this section, the McCormick ine-
qualities reduce to the following:

where vs
aij

 is defined as:

Note that the variable vs
aij

 can be interpreted as the total amount of attribute a in 
the flow along arc (i, j) under scenario s . With this definition, constraints (31-b), 
defining the grade at intermediate facilities j ∈ J , simply state that the amounts of 
attribute a entering and leaving node (facility) j are equal.

3.2.3  Decomposition algorithm

As mentioned in Sect. 3.1, to solve the DP (the downstream sub-problem), an exact 
algorithm, inspired by Benders decomposition (Benders 1962), is proposed. Benders 
decomposition can be summarized as follows: The original problem is reformulated 
into a master and a number of sub-problems. At each iteration, the values of the 
master problem variables are first determined, and the sub-problems are solved by 
holding these variables fixed. If all the sub-problems are feasible and bounded, an 

(37-a)v ≥ xy + yx − xy

(37-b)v ≥ xy + yx − xy

(37-c)v ≤ xy + yx − xy

(37-d)v ≤ xy + yx − xy

(38-a)vs
aij

≥ Λs
ai
ys
ij

(38-b)vs
aij

≥ Λs
ai
ys
ij
+ Ys

ij
ps
ai
− Λs

ai
Ys
ij

(38-c)vs
aij

≤ Λs
ai
ys
ij

(38-d)vs
aij

≤ Λs
ai
ys
ij
+ Ys

ij
ps
ai
− Λs

ai
Ys
ij

(38-e)vs
aij

= ps
ai
ys
ij
.
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optimal cut is added to the master problem; otherwise, a feasibility cut is added. 
A lower bound can be computed from the sub-problems and an upper bound is 
obtained if the master problem is solved to optimality. The process continues until an 
optimal solution is found or until the optimality gap is smaller than a given threshold 
value. In the context of stochastic integer programming literature, this algorithmic 
scheme is also known as the L-shaped method (Birge and Louveaux 2011).

In general, there are two decomposition strategies: one that projects out all vari-
ables of the subproblems from the master, and one that does not project out any 
variables. In this paper, the second strategy is used. Namely, the master formulation 
includes all variables. It also includes linear approximations of the non-linear con-
straints (all bilinear terms are replaced with the corresponding McCormick enve-
lopes or exact linearization, described in the previous section). The master is thus 
a mixed-integer linear programming relaxation of the original problem. During the 
course of the algorithm, additional constraints (Benders cuts) are also included in 
the formulation of the master problem to obtain a better approximation of the objec-
tive function value as discussed in detail below.

Define:

• � : an approximation of the objective function value of the original problem DP 
(the non-linear stochastic mixed integer program).

• U : an upper bound on the value of the objective function value of the original 
problem DP described in Sect. 3.2.1. Since DP is bounded, U is finite.

• R : the set of first-stage feasible solutions, indexed by r . Note that since first-
stage decision variables ( �gi ) are binary, the set R is finite.

Moreover, for every r , let:

• �r : a constant equal to the expected second stage value of the rth solution. To 
compute �r , the �gi are fixed as in the rth solution and the so-obtained |S| blending 
problems are solved to get the values of the other variables. Let 
(ys∗

ij
, os∗

m
,Δs+∗

j
, �s+∗

al
, ds+∗

aa�l
) be the optimal solution of the blending problem associ-

ated with scenario s . Then �r is calculated as follows:

• Sr : the subset of indices (g, i) such as �gi = 1 in the rth feasible solution, in other 
words, Sr = {(g, i) ∶ g ∈ G, i ∈ I  and g has been sent to first-stage facility i in 
the rth feasible solution}.

Using this notation, the master problem can be formally written as:

(39)

θ
r
=

1

S

�

s∈S

⎧
⎪
⎨
⎪
⎩

�

m∈M

�mo
s∗
m
−

�

(i,j)∈A

cijy
s∗
ij
−
�

j∈N

�+
j
Δs+∗
j

−
�

a∈A

�

l∈L

c+
al
�s+∗
al

−
�

a∈A

�

a�∈Ra

�

l∈L

c+
aa� l

ds+∗
aa�l

⎫
⎪
⎬
⎪
⎭

(40)max�
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(41)

� ≤
1

S

∑

s∈S

{
∑

m∈M

�mo
s
m
−

∑

(i,j)∈A

cijy
s
ij
−
∑

j∈N

�+
j
Δs+

j
−
∑

a∈A

∑

l∈L

c+
al
�s+
al

−
∑

a∈A

∑

a�∈Ra

∑

l∈L

c+
aa�l

ds+
aa�l

}

(42)

� ≤ −
(
U − �r

)
(

∑

(g,i)∈Sr

�gi −
∑

(g,i)∉Sr

�gi

)
+
(
U − �r

)(||Sr|| − 1
)
+ U ∀r ∈ R

(43)
∑

i∈I

�gi = 1 ∀g ∈ G

(44)�gi ≤ �gi ∀g ∈ G, i ∈ I

(45)
∑

g∈G

ws
g
�gi =

∑

l∈L

ys
il

∀i ∈ I, s ∈ S

(46)
∑

l∈L

ys
il
− Δs+

i
≤ Ci ∀i ∈ I, s ∈ S

(47)
∑

i∈I

ys
il
− Δs+

l
≤ Cl ∀l ∈ L, s ∈ S

(48)
∑

g∈G

�s
ag
ws
g
�gi =

∑

g∈G

ws
g
uagi ∀a ∈ A, i ∈ I, s ∈ S

(49)
∑

i∈I

vs
ail

− �s+
al

≤ Pal

∑

i∈I

ys
il

∀a ∈ A, l ∈ L, s ∈ S

(50)
∑

i∈I

vs
ail

− ds+
aa�l

≤ Raa�l

∑

i∈I

vs
a�il

∀a ∈ A, a� ∈ Ra, l ∈ L, s ∈ S

(51)os
m
=
∑

l∈L

rml

∑

i∈I

vs
mil

∀m ∈ M, s ∈ S

(52)us
agi

≤ Λs
ai
�gi ∀a ∈ A, g ∈ G, i ∈ I, s ∈ S

(53)us
agi

≤ ps
ai

∀a ∈ A, g ∈ G, i ∈ I, s ∈ S

(54)us
agi

≥ ps
ai
−
(
1 − �gi

)
Λs

ai
∀a ∈ A, g ∈ G, i ∈ I, s ∈ S
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The constraints of the master can be divided into five categories: upper bounds 
on the objective function, capacity constraints, upper bounds on the grade and 
ratio, approximation of the bilinear terms, and integrality and non-negativity con-
straints. While the last four categories are self-explanatory given the discussion 
in the previous sections, the constraints in the first category [constraints (41) and 
(42)] deserve some discussion.

Recall that variable � gives an approximation of the objective function value 
of DP (the non-linear stochastic mixed integer program). Constraints (41) simply 
state that � can be at most the objective function value; that is, it has to be cho-
sen in a way that is coherent with the values of the other variables of the master. 
Constraints (42) are similar to those introduced by Laporte and Louveaux (1993) 
in the context of stochastic integer programs with complete recourse, and they 
are gradually added to the master during the solution procedure to ensure that 
if an already visited first-stage solution r is selected, then a reward equal to �r is 
incurred. This reward is nothing else but the exact value of this solution, which is 
known since it has been already calculated during the previous iterations of the 
algorithm. Otherwise, there are no restrictions on � except (41) and non-negativ-
ity. Note that � is non-negative because it is always possible to send all groups 
to the waste dump and get a solution of value 0 (no costs, no revenues, no con-
straints to be violated since it is assumed that the waste dump has an unlimited 
capacity).

As discussed above, the master provides an upper bound. Moreover, once solved, 
a feasible solution to the original non-linear formulation can be determined. This is 
done as follows: Variables �gi are fixed, which allows setting and fixing variables ps

ai
 

as well, and in turn eliminating all bilinearities from the model. The resulting Bend-
ers sub-problem can be separated by scenario and reduces to independent problems 
that have the structure of a blending problem and can be solved as linear programs 
(LPs). Due to the presence of the variables Δs+

i
,Δs+

l
, �s+

al
 , and ds+

aa�l
 the sub-problems 

are always feasible. Furthermore, since the objective function coefficients (costs and 
profit parameters) are finite, any feasible solution must be bounded.

A formal statement of the proposed decomposition algorithm is given below.

(55)vs
ail

≥ Λs
ai
ys
il

∀a ∈ A, (i, l) ∈ A, s ∈ S

(56)vs
ail

≥ Λs
ai
ys
il
+ Ys

il
ps
ai
− Λs

ai
Ys
il

∀a ∈ A, (i, l) ∈ A, s ∈ S

(57)vs
ail

≤ Λs
ai
ys
il

∀a ∈ A, (i, l) ∈ A, s ∈ S

(58)vs
ail

≤ Λs
ai
ys
il
+ Ys

il
ps
ai
− Λs

ai
Ys
il

∀a ∈ A, (i, l) ∈ A, s ∈ S

(59)�gi ∈ {0, 1} and y, p, o,Δ+, �+, d+, u, v, � ≥ 0.
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Step 0 (Initialization) Set r ∶= 0,R ∶= ∅,Z = UB ∶= ∞ or an appropriate 
upper bound, Z = LB ∶= −∞ or the value of the best-known feasible solution. 
Specify an optimality gap or tolerance �
Step 1 (Solving the master problem) Set r ∶= r + 1 and solve the current mas-
ter problem. Let (�r, yr, pr, or,Δ+r, �+r, d+r, ur, vr, �r) be the so-obtained optimal 
solution and Ur be the value of this solution. Set Z ∶= Ur

Step 2 (Solving the Benders sub-problem) Fix the first-stage variables � to �r , 
solve the resulting |S| blending sub-problems, and compute the expected true 
value �r of this rth feasible solution.
Step 3 (Updating the bounds and the incumbent) If 𝜃r > Z , then set Z ∶= �r 
and update the best-known feasible solution (the incumbent).
Step 4 (Verifying the stopping criterion and updating the master) If Z−Z

Z
≤ � , 

stop and return the best-known feasible solution. Otherwise, include r inR , add to 
the master the optimality cut (42) and return to Step 1.

The algorithm summarized above yields a global optimal solution, within � opti-
mality gap, in a finite number of iterations. The convergence of the algorithm is 
guaranteed by the finite number of feasible first-stage solutions.

3.2.4  Using a surrogate

As can be seen from the results in the next section (Sect. 4), the proposed decom-
position algorithm converges rapidly. However, using it to evaluate each mining 
sequence (neighbor solution) generated using the hyper-heuristic might not be the 
most suitable approach, as it would lead to prohibitive computational times (recall 
that computing the objective function of any neighbor solution entails solving the 
associated downstream sub-problem). Instead, a surrogate model can be used to 
provide fast approximations of the objective function and thus speed up the search. 
We propose using machine learning techniques, namely an artificial neural network 
as a surrogate model (surrogate evaluation function). The most promising neighbor 
solutions; that is, those achieving the best value for the surrogate, are subsequently 
evaluated using the decomposition algorithm.

The performance of a neural network often depends on the choice of the input 
features. We thus need to determine which features are the most appropriate for the 
problem under consideration. In this paper, we look at five different ways to define 
input features and we compare their impact on the prediction accuracy. In the first, 
referred to as FULL, the inputs are the grade of each attribute in each group under 
each scenario ( �s

ag
∀a ∈ A, g ∈ G, s ∈ S ) and the tonnage of each group under each 

scenario ( ws
g
∀g ∈ G, s ∈ S ). This means that the neural network is fed a very large 

data set consisting of | G||A| |S| + |G||S| input features. In the second, referred to as 
TGPS, tonnages and attribute grades are also used. However, rather than using data 
about each individual group as FULL does, aggregated data is used. Specifically, let 
B be the set of blocks mined in the current solution. The inputs to be fed to the neu-
ral network are the total tonnage of these blocks ( 

∑
b∈B

wb ) and the grade of each 
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attribute under each scenario ( 
∑

b∈B
�s
ab
wb∑

b∈B
wb

∀a ∈ A, s ∈ S ). The third way, referred to as 
TGA , is very similar to TGPS except that the attribute grades are averaged over the 
scenarios. Thus, a total of |A| + 1 input features are fed to the neural network instead 
of |A| |S| + 1 in TGPS. The fourth way, referred to as ENPS, accounts for eligibility 
constraints. Recall that groups cannot be sent to just any first-stage facility i ∈ I  and 
that the parameter �gi identifies the subset of facilities to which each group is eligible 
( �gi = 1 if group g is eligible for node i ∈ I  ; 0, otherwise). In ENPS, the inputs are 
the total tonnage eligible for each first-stage facility under each scenario 
( 
∑

g∈G�giw
s
g
∀i ∈ I, s ∈ S ) and the grade of each attribute in the material eligible for 

each first-stage facility under each scenario ( 
∑

g∈G�gi�
s

ag
ws

g∑
g∈G�giw

s
g

∀a ∈ A, i ∈ I, s ∈ S ). 

Finally, the fifth way, referred to as ENA, is similar to ENPS except that the ton-
nages and the attribute grades are averaged over the scenarios, which leads to 
|A| |I| + |I| input features as opposed to |A||I| |S| + |I| |S| in ENPS.

4  Computational results

The computational experiments aim to assess the efficiency of the decomposition 
algorithm (DA), the prediction accuracy of the neural network-based surrogate 
model (NN), and the effectiveness of using NN instead of DA when solving large-
scale instances of the SSOMC. In what follows, we first describe the test instance. 
We then present the computational results. All tests were performed on an Intel(R) 
Xeon(R) CPU X5675 computer (3.07  GHz) with 96 Go of RAM running under 
Linux. The decomposition algorithm was coded in C +  + using IBM ILOG CPLEX 
12.6.1.

Fig. 1  Schematic representation of the copper–gold mining complex
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4.1  Dataset

The test instance consists of a copper–gold mining complex that comprises two 
mines, five crushers, three mills, one leach pad, one bioleach, and one waste dump. 
As can be seen from Fig. 1, material comes out of the mines and goes to one of the 
five crushers or to the bioleach or the waste dump. It gets further processed in one of 
the three mills or in a leach pad and ends up at the port or as copper cathodes. Note 
that the main sellable final product is copper, but the two mines also produce gold, 
iron, and molybdenum.

There are six main material types (sulphide high grade, sulphide low grade, oxide 
high grade, oxide low grade, mixed, and waste) and seven attributes of interest (cop-
per total, copper soluble, gold, silver, arsenic, iron, and molybdenum). A set of 15 
equiprobable scenarios is used to model geological uncertainty (grades and material 
types).

Of the mining complex’s two mines, the first one (mine 1) has 68,450 blocks, 
while the second one (mine 2) has 103,390 blocks. In total, there are 171,840 blocks 
to be scheduled over 8 years. In addition to the slope, eligibility, mining and pro-
cessing capacity constraints, there are also blending and ratio constraints that must 
be taken into account. Namely, at the mills, the level of arsenic, iron and the ratio of 

Table 1  Summary of the 
computational times in seconds 
obtained when considering 
each of the two mines 
individually and the two mines 
simultaneously

Period CPU time (in seconds)

Mine 1 Mine 2 Mine 1 and 2

1 1.91 2.48 5.4
2 1.73 2.96 4.43
3 1.26 3.66 7.99
4 1.73 2.59 3.94
5 1.68 3.18 8.47
6 1.21 3.29 4.77
7 0.37 3.84 8.21
8 1.02 10.09 5.71

Table 2  Number of cuts 
generated when considering 
blocks extracted from both 
mines

Period Number of cuts

1 36
2 27
3 59
4 21
5 58
6 25
7 46
8 44
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copper total to iron need to be controlled, while at the bioleach, the ratio of copper 
soluble to copper total must be controlled.

4.2  Evaluation of the decomposition algorithm

In this section, results obtained with the decomposition algorithm (DA) are reported. 
For each mine, a mining sequence was generated using the random heuristic pro-
posed in Lamghari and Dimitrakopoulos (2012). DA was applied to determine the 
flow of the extracted material.

As can be seen from the results in Table 1, DA converges quite rapidly. It obtains 
an optimal solution of the downstream sub-problem in just a few seconds. A com-
parison of the results in columns 2, 3, and 4 of this table show that the algorithm 
scales well with size. The difference in solution time can be explained by the num-
ber of major iterations, or equivalently, the number of cuts added to the master prob-
lem during the course of the algorithm. The number of cuts generated when solving 
the instance with two mines is given in Table 2. Note that in our implementation, 
instead of solving one master at each iteration, a branch-and-Benders-cut method, 
also known as Benders-based branch-and-cut method, was used. In this method, a 
single branch-and-cut tree is constructed, and the cuts are added to this tree during 
its exploration.

4.3  Evaluation of the neural network‑based surrogate model

In this section, we evaluate the prediction accuracy of the neural network-based sur-
rogate model (NN) and investigate the impact of input features on its performance. 
Details about the neural network are first presented, followed by a summary of com-
putational results.

We used a standard neural network architecture, namely a two-layer perceptron 
network. The network consists of I input variables that provide information about 
the solution (mining sequence), two fully connected hidden layers of 50 neurons, 

Table 3  Number of input 
features fed to the neural 
network

Method FULL TGPS TGA ENPS ENA

Number of inputs (I) 14,400 106 8 840 56

Table 4  Impact of the input features on the performance of the neural network

Method FULL TGPS TGA ENPS ENA

Number of inputs (I) 14,400 106 8 840 56
r2 training score – 0.999815 0.997350 0.999741 0.999721
r2 test score – 0.999813 0.997505 0.999754 0.999713
Training time (in minutes) – 2.97 5.69 7.98 4.62
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and a single output neuron that provides an estimate of the objective function value 
given the inputs. Table 3 summarizes the values of I for each of the five ways of 
defining the input features discussed in Sect. 3.2.4. The logistic function was used 
as the activation function, and the Adam algorithm (adaptive moment estimation), 
proposed by Kingma and Ba (2014), was used to update the weights. The adaptive 
learning rate and the L2 regularization penalty were set to 10−5 , while the conver-
gence tolerance value was set to 10−7.

To obtain training and testing data, 100,000 different solutions (mining 
sequences) were generated using the low-level heuristics introduced in Sect. 3.1, and 
each solution was evaluated using the decomposition algorithm. The available data 
was then divided into two groups. The first, consisting of 95% of available data, was 
used to train the neural network. The remaining data was used for testing. Before 
training, the input features were individually standardized, and the output value was 
normalized.

Table  4 summarizes the results of the experiments. For each method used to 
define the input features, the training scores and the test scores are shown. The train-
ing time (in minutes) is also reported. The results indicate that method FULL is 
inappropriate as the neural network failed to converge. By considering fewer inputs 
(methods TGPS, TGA , ENPS, and ENA), the neural network was capable of esti-
mating the objective function value with high accuracy. The results also show that 
introducing information about the individual scenarios leads to higher accuracy 
(TGPS outperforms TGA  and ENPS slightly outperforms ENA). So overall, TGPS 
would rank first, ENPS second, ENA third, and TGA , where only 8 input features 
are fed to the neural network, would rank last.

While training the neural network took only a few minutes, as can be seen from 
the last row of Table 4, generating 100,000 solutions (mining sequences) and evalu-
ating each solution using the decomposition algorithm to collect data for training 
and testing was time consuming and took approximately 3 weeks. The next experi-
ments address the question whether considering less data can deteriorate the neural 
network performance.

Only 100 solutions were generated and evaluated using the decomposition algo-
rithm. Again, the available data was divided into two groups: 95% for training the 
neural network and 5% for testing. The results are presented in Table 5.

If we compare the scores in Table 5 to those in Table 4, we observe that the per-
formance of the neural network remains approximately the same. The neural net-
work is capable of estimating the objective function value with high accuracy even 
when less data is used for training, indicating that the objective function value is 

Table 5  Performance of the neural network when less data is used for training and testing

Method FULL TGPS TGA ENPS ENA

Number of inputs (I) 14,400 106 8 840 56
r2 training score – 0.999051 0.994065 0.999506 0.995103

r2 test score – 0.999779 0.999359 0.999641 0.996395
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highly correlated to the inputs. If we compare the five methods to define the input 
features, TGPS seems again to be the best. Thus, TGPS is used in all further 
experiments.

4.4  Effectiveness of using the neural network‑based surrogate model instead 
of the decomposition algorithm

The purpose of the last experiments is to evaluate the effectiveness of the neural net-
work-based surrogate model (NN) when embedded within the proposed matheuris-
tic for the SSOMC. To this end, we compare the algorithm introduced in Sect. 3.1, 
henceforth referred to as H-DA, to a variant, H-NN, which is equivalent to H-DA 
except that the neighbor solutions generated by the hyper-heuristic (H) are first eval-
uated using NN instead of DA to identify the most promising ones. Only those most 
promising neighbor solutions are subsequently evaluated using DA. Tests are per-
formed on two instances derived from the mining complex described in Sect. 4.1. In 
the first instance (Mine 1), only the smaller mine with 68,450 blocks is considered. 
In the second instance (Mine 1 and 2), the two mines, with a total of 171,840 blocks, 
are considered. The number of periods and scenarios is similar in the two instances 
(8 and 15, respectively).

The two algorithms, H-DA and H-NN, terminate after a specified number of 
iterations denoted IterMax. Because computational times tend to grow significantly 
when DA is used, for the small instance, IterMax was set to 5000 iterations for both 
algorithms, while for the large instance, it was set to 100 for H-DA, and two differ-
ent values were considered for H-NN: 100 and 1000.

To assess the performance of H-DA and H-NN, the following measures are used:

• The percentage of improvement measured as Imp.% =
Z∗−Z0

Z0
× 100 , where Z0 

and Z∗ are the value of the initial solution and the value of the final solution, 
respectively. Note that to ensure a fair comparison, both H-DA and H-NN start 
from the same random initial solution.

• The CPU time, in minutes, denoted Time.

Table  6 summarizes the results obtained. As one would expect, H-DA outper-
forms H-NN in terms of solution quality; however, H-NN is significantly faster than 
H-DA. On the small instance Mine 1, H-DA provides a better solution than H-NN 
(the gap between the two solutions is 3.15%), but it is 20 times slower than H-NN 

Table 6  Performance of algorithms H-DA and H-NN 

Instance Number of blocks IterMax H-DA H-NN

Imp.% Time (in minutes) Imp.% Time (in minutes)

Mine 1 68,450 5000 9.79 10,420.32 6.33 550.17
Mine 1 and 2 171,840 100 11.73 2943.24 3.52 65.03

1000 – – 7.45 355.96
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(7.24 days as opposed to 9.17 h). If we consider the largest instance with two mines, 
when the number of iterations is fixed to 100, the gap between the solution found 
by H-DA and that found by H-NN is 7.35%. The difference in CPU time is much 
more pronounced: one hour versus two days (CPU time is reduced by a factor of 
approximately 46 when H-NN is used). H-NN can further improve the solution 
quality when more iterations are allowed. After 1000 iterations, the gap between the 
two solutions is reduced to 3.83%. Performing 1000 iterations of H-NN requires less 
than 6 h, which is still much shorter than the 2 days required by H-DA.

Overall, the results clearly show the benefits of using the neural network-based 
surrogate model. While using the decomposition algorithm is better in terms of solu-
tion quality because the downstream sub-problem is solved to optimality, using this 
algorithm to evaluate each and every neighbor solution results in prohibitive compu-
tational times, especially when solving large-scale instances of the SSOMC. Signifi-
cant performance improvement is achieved when the neural network-based surrogate 
model is embedded within the matheuristic to sample a subset of the neighborhood 
for exact evaluation with the decomposition algorithm.

5  Conclusions

This paper deals with the development of new models and solution approaches to 
address the large and complex problems faced by the mining industry when simul-
taneously optimizing mineral value chains (mining complexes) under uncertainty. 
A general mathematical model that integrates geological uncertainty and multiple 
mines sharing the same downstream infrastructure has been proposed to simulta-
neously optimize mining decisions and the flow of the extracted material. A new 
methodology that integrates components from exact algorithms (relaxation and 
decomposition), machine learning techniques (reinforcement learning and artificial 
neural networks), and heuristics (local improvement and randomized search) has 
been developed to efficiently solve the proposed formulation.

The proposed approach opens doors for new methodologies that capitalize on the 
synergies between machine learning and optimization techniques. Future work will 
follow this direction.
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