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A B S T R A C T   

This paper presents a learning-based stochastic simulation method that incorporates high-order spatial statistics 
at multiple scales from sources with different resolutions. Regarding the simulation of a certain spatial attribute, 
the high-order spatial information from different sources is encapsulated as aggregated kernel statistics in a 
spatial Legendre moment kernel space, and the probability distribution of the underlying random field model is 
derived by a statistical learning algorithm, which matches the high-order spatial statistics of the target model to 
the observed ones. In addition, a related software is developed as the SGeMS plugin. Case studies are conducted 
with a known data set and a gold deposit, demonstrating reproduction of high-order spatial statistics from the 
available data, as well as practical aspects in mining applications.   

1. Introduction 

High-order stochastic simulation methods are amongst the latest 
developments in geostatistical simulation (Journel and Huijbregts 1978; 
David 1988; Goovaerts 1997; Remy et al., 2009; Mariethoz and Caers 
2014), aiming to reproduce complex spatial patterns from the available 
data. The spatial patterns represent the interaction of spatial attributes 
of certain natural phenomena among multiple locations and they can be 
characterized by the high-order spatial statistics defined in different 
ways such as high-order spatial cumulants or high-order spatial mo-
ments (Dimitrakopoulos et al., 2010; Mustapha and Dimitrakopoulos 
2010b; De Iaco and Maggio 2011). High-order simulation methods 
contrast with the multiple point simulation approaches, where the 
multi-point interrelations are indirectly captured as either the frequency 
of data events occurring at multiple locations (Guardiano and Srivastava 
1993; Strebelle 2002; Journel 2003; Remy et al., 2009) or as similarity 
measures amongst patterns (Arpat 2005; Zhang et al., 2006; Mariethoz 
et al., 2010; Mariethoz and Caers 2014). Instead, the high-order simu-
lation methods explicitly build probabilistic models based on high-order 
spatial statistics. For instance, Legendre polynomial expansion series are 
used to approximate the probability distributions of spatial attributes 
where the expansion coefficients are determined by computing the 
spatial cumulants, leading to an early development of a high-order 

simulation algorithm known as HOSIM (Mustapha and Dimi-
trakopoulos 2010a, 2011). The concept of high-order spatial statistics 
has also been extended to multiple variables to develop joint simulation 
of spatially correlated attributes (Minniakhmetov and Dimitrakopoulos 
2016). The probabilistic model of high-order simulation makes no 
parametric assumptions of the probability distribution and thus char-
acterizes the non-gaussian and non-linear features of the spatial attri-
butes. The estimation of the probability distribution yields a numerical 
model based on components link to the empirical high-order spatial 
statistics calculated from the available data. In practice, the input data 
for estimating the probability distribution may impact the numerical 
stability of the related estimation. The available sample data alone may 
not be sufficient to infer the high-order spatial statistics required and, 
thus, may influence the numerical model. This limitation is alleviated 
with the use of a training image (TI) as the complementary statistical 
analog (Mustapha and Dimitrakopoulos 2010a). Another approximation 
model of a high-order simulation that shows substantial improvement 
with regards to numerical stability is found in Minniakhmetov et al. 
(2018). The latter authors use the Legendre-like splines as the basis 
functions for the approximation series, which leads to a better repro-
duction of spatial data patterns, as compared to the previous HOSIM 
method. 

A concern when using a TI as a statistical analog of the underlying 
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random field model is the possible statistical conflicts between the TI 
and sample data. This issue is more prominent in multiple point simu-
lation methods as they are TI-driven, and thus related methods have 
been proposed to select TIs according to certain criteria of consistency 
with the sample data (Pérez et al., 2014; Feng et al., 2017). Yao et al. 
(2020) propose a statistical learning framework for high-order sequen-
tial simulation in a newly defined kernel space; the related learning 
algorithm shows generalization capacity to comply with the inferred 
model from the TI with the spatial statistics of the sample data, and 
thereby mitigates the possible statistical conflicts. The concepts of sta-
tistical machine learning and kernels have been brought up in some 
state-of-the-art geostatistical methods. For instance, the Gaussian ker-
nels are used to define pattern similarity in kernel space for clustering 
spatial patterns in TIs (Scheidt and Caers 2009). New spatial clustering 
methods have been proposed to incorporate spatial correlations among 
multivariate geological attributes based on statistical learning/modeling 
(Martin and Boisvert 2018; Talebi et al., 2020). A so-called Stochastic 
Local Interaction model (Hristopulos 2015) is proposed for geostatistical 
prediction based on the optimization of a specific energy functional 
where the distance measure for optimization can be defined through 
kernels. The kernels are also used in developing a learning-based algo-
rithm for geostatistical interpolation based on high-order spatial statis-
tics through implicit volterra series (Gonbadi et al., 2019). Amongst 
these recent developments, the kernels are usually defined as classic 
kernel functions such as RBF or Gaussian kernel, while a new kernel 
function is constructed in Yao et al. (2020) to explicitly incorporate the 
high-order spatial statistics with a systemic learning framework pro-
vided for high-order simulation. Specifically, a spatial Legendre moment 
kernel is proposed by Yao et al. (2020) to define the associated kernel 
space. The replicates of the data events (conditioning data) retrieved 
from the available data are mapped into the spatial Legendre moment 
kernel space by a feature mapping function. Thereafter, the so-called 
empirical kernel statistics are defined by taking a sample average of 
the mapped elements in the kernel space corresponding to the replicates. 
As a result, the empirical kernel statistics carried high-order spatial 
statistics of the replicates. On the other hand, the target probability 
distribution from the related random field model can be embedded into 
the same kernel space through the termed expected kernel statistics. A 
kernelized learning algorithm is designed specifically to match the ex-
pected kernel statistics to the empirical kernel statistics, which results in 
a simulation model with a reproduction of high-order spatial statistics 
from the available data. Although the proposed statistical learning 
framework is general, one limitation of the application in Yao et al. 
(2020) is that the replicates retrieved from the TI act as the only training 
data in the related learning algorithm; this may influence the spatial 
continuity of the realizations given that the statistical conflicts between 
the TI and sample data are severe. Yao et al. (2021) propose a TI-free 
high-order simulation method based on the statistical learning frame-
work. The concept of aggregated kernel statistics is defined such that the 
samples with different spatial configurations can be effectively utilized 
for statistical inference of the random field model. A limitation of the 
above-mentioned TI-free simulation method is that the quality of the 
realizations depends on the sampling density. While the sample data are 
relatively sparse, the fine-scale spatial structures of the spatial attributes 
of interest are not well represented. The limitations found in previous 
simulation methods motivate the present research to propose a new type 
of aggregated kernel statistics, which aims to incorporate the high-order 
spatial information at multiple scales. Specifically, the sample data are 
relatively sparse and thus carry high-order spatial information at coarse 
scales. On the other hand, the TIs are exhaustive and can provide 
high-order spatial information at finer scales. The general idea of the 
proposed aggregated kernel statistics in this paper is to exclude the in-
fluence of the TI from deriving the high-order spatial statistics at coarse 
scales by only utilizing the sample data, while complementing the 
high-order spatial information with TI. Thereafter, the aggregated 
kernel statistics are utilized in the statistical learning framework for 

further inference of the random field model. It should be noted that the 
aggregated kernel statistics proposed in this paper emphasize the 
incorporation of high-order spatial information from different sources 
across multiple spatial scales while minimizing their statistical incon-
sistency, which is very different from the application in Yao et al. (2021) 
where only sample data are considered in computing the kernel statis-
tics. Although the present study considers only two different scales of 
data as the samples and the TI, the concept of the aggregated kernel 
statistics proposed herein can be generalized to multiple scales. The 
utilization of multi-scale information from various sources has recently 
drawn attention in mining and geographical applications (Neves et al., 
2019; Rasera et al., 2020). In addition, a high-order simulation program 
is developed accordingly and described in this paper. The implementa-
tion is written in C++ language and is compatible to the SGeMS 
software. 

In the following sections, Section 2 presents the high-order simula-
tion method based on statistical learning and the concept of the aggre-
gated kernel statistics. Section 3 describes a kernelized high-order 
simulation program and its implementation in C++ language. Section 4 
contains two different case studies with a synthetic data set and at a gold 
deposit. Conclusions are presented in Section 5. 

2. Method 

In this section, concepts of high-order sequential simulation are first 
outlined, followed by a brief overview of the spatial Legendre moment 
kernel space. The concept of aggregated kernel statistics at different 
scales is then presented and utilized to develop a kernelized learning 
algorithm. 

2.1. High-order sequential simulation 

Suppose that the attributes of interest are modeled as a random field 
Z(u) where u represents locations at a certain spatial domain. The at-
tributes at multiple locations within the spatial domain comprise a 
multivariate probability distribution. The multivariate probability dis-
tribution can be decomposed into a sequence of conditional probability 
distributions so that the random values can be sequentially drawn from 
the multivariate probability distribution to generate the simulated re-
alizations. Without loss of generality, the conditional probability density 
functions (CPDF) can be approximated as f(z0|ζ1,…, ζN ) given that the 
node Z0 to be simulated center at u0 and the conditioning data within its 
neighborhood located at u1,…,uN with the value of attributes corre-
sponding to ζ1,…, ζN. In terms of high-order sequential simulation, the 
high-order spatial statistics are taken into account for approximating the 
CPDF f(z0|ζ1,…,ζN), and the conditioning data ζ1,…, ζN are called as a 
data event associated with a spatial template defined by distance vectors 
of location u1,…,uN to the location u0 of the center node. The high- 
order spatial statistics are contained in the replicates of a data event 
for inference. Note that the replicates of a data event in high-order 
simulation methods are not necessary to have identical or similar 
attribute values to the data event, but rather to have the same spatial 
template, i.e., the same data geometry. In general, the replicates from 
the sample data correspond to spatial template at coarse scales and the 
replicates from the TI provides spatial information at finer scales 
because of the sparsity of the sample data in contrast to the exhaustive 
TI. 

2.2. Kernel space and spatial Legendre moment kernel 

Suppose the original data space of the considered spatial attributes is 
represented by a nonempty set E, then an element x ∈ E can be taken to a 
kernel space H by a so-called feature mapping function ϕ(x) : E→H . 
The kernel space H is a Hilbert space with the inner product defined by 
a positive definite kernel function K : E× E→R, where R is the set of the 
real numbers. Given a Hilbert space H with the kernel K, then for x, y ∈
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E and the corresponding features ϕ(x),ϕ(y) ∈ H , the inner product on 
H can be defined as 

ϕ(x),ϕ(y)H = K(x, y). (1) 

The symbol < ⋅, ⋅>H represents the inner product of elements in the 
Hilbert space H throughout this paper. An interesting property with the 
kernel K is that the function ϕ(x) : E→H , x ↦ K( ⋅, x) also defines a 
feature map namely as reproduce kernel map or canonical feature map 
(Scholkopf and Smola 2001; Steinwart and Christmann 2008). The 
kernel function K has the reproducing property as 

< f (x),K(⋅, x)H = f (x), (2)  

∀x ∈ E and ∀ f ∈ H , therefore there is 

< K(⋅, x),K(⋅, y)>H = K(x, y). (3) 

This kind of reproduce kernel map is adopted throughout this paper 
as the feature mapping function from the original data space to the 
kernel space. It is obvious from Eq. (3) that the elements in the kernel 
space after the feature mapping from the original data space have the 
similarity measure defined as the distances between each other through 
the kernel function K. 

The spatial Legendre moment kernel (Yao et al., 2020) allows to 
carry over the high-order spatial statistics information from the original 
data space to the newly defined kernel space with the definition as 

KV(X,Y) =
∏N

i=0

[
∑W

w=0

(

w +
1
2

)

Pw (xi )Pw (yi )

]

, (4)  

where KV is the kernel corresponding to the set of random variables 
associated with a spatial template of N distance vectors, and Pw is the 
Legendre polynomial of order w. 

2.3. Aggregating kernel statistics at different scales 

With the definition of spatial Legendre moment kernel in Eq. (4), the 
empirical kernel statistics can be defined accordingly based on the 
sample average of the elements in the kernel space mapped from sam-
ples in the original data space. The kernel function KV depends on the 
spatial template involved, and so as the kernel statistics from the 
available data are related to the spatial templates of the data events. 
When both the sample data and the TI are available for retrieving the 
replicates and inferring the kernel statistics, the replicates from the two 
different sources generally carry high-order spatial statistics information 
at different scales. Specifically, the sample data are relatively sparse that 
frequently the spatial configuration of the replicates from them could 
only partially match to the spatial template of the data event, and theses 
replicates carry the spatial statistics at coarser scale with relatively 
higher compliance to the underlying random field. On the contrary, the 
TI are exhaustive data and the replicates from it can fully match the 
spatial template of the data event, thus the replicates provide spatial 
statistics at finer scale but possibly with less compliance to the under-
lying random field model. 

Suppose that the spatial template of the data event be noted as v and 
the corresponding set of random variables be noted as V. Let vs be the 
spatial template of the replicates of the data event retrieved from the 
sample data and the associated set of random variables as Vs, vs and Vs 
are the subsets of v and V, respectively. Let G vs be the set of replicates 
from the sample data and the number of these replicates be ns, the kernel 
statistics based on G vs can be defined as 

κ[G vs ] =
1
ns

∑ns

i=1
KVs

(
ζs

i,vs
, ⋅
)
, (5)  

where ζs
i,vs 

is the vector of the attribute values corresponding to the 
replicates in set G vs . The kernel statistics of the replicates from the TI 

can be defined separately in a similar way. The motivation of aggre-
gating kernel statistics at different scales is to utilize the part of high- 
order spatial information of the replicates from the sample data and in 
the meanwhile complement the rest part of high-order spatial infor-
mation using the replicates from the TI. In other words, the spatial 
template v is divided into two sub-templates vs and vt respectively cor-
responding to the sample data and the TI, and so are the set of random 
variables are divided into Vs and Vt, respectively. Therefore, there are 

v = vs ∪ vt, (6)  

and 

V = Vs ∪ Vt. (7) 

The above subdivision regarding the spatial template also leads to 
kernel subspaces with kernels KVs and KVt . Suppose the ensemble of 
replicates from both the sample data and the TI denote as a set G v and let 
nt denote the number of replicates from the TI. The aggregated kernel 
statistics combining the replicates both from the TI and the sample data 
at different scales are defined as 

κ[G v ] =
1
ns

∑ns

i=1
KVs

(
ζs

i,vs
, ⋅
)

+
1
nt

∑nt

j=1

[
KV

(
ζ t

j,v, ⋅
)
− KVs

(
ζ t

j,vt
, ⋅
)]

, (8)  

where ζs
i,vs

, ζt
j,v and ζt

j,vt 
represent the replicates from the sample data and 

the replicates from the TI with spatial template v and vt, respectively. 

2.4. Kernelized high-order sequential simulation algorithm 

The high-order spatial information from both the sample and the TI 
can be represented by the aggregated kernel statistics at two scales. In 
terms of high-order sequential simulation, the target is to obtain con-
ditional probability distributions which match the high-order spatial 
statistics of available data. This matching of high-order spatial statistics 
can be conveniently achieved by a statistical learning algorithm in 
kernel space. Suppose that the target probability density function p̂ lies 
in the convex space of certain prototype probability density functions pi 
as 

p̂ =
∑n

i=1
αipi, (9)  

where 
∑n

i=1
αi = 1 and αi ≥ 0, ∀ 1 ≤ i ≤ n. It is straightforward that the 

expected kernel statistics with regards to the probability distribution can 
be defined as 

κ0 [p̂] = Ez0∼p̂ [K0 (z0, ⋅)] (10)  

where Z0 is the center node to be simulated and K0 is the corresponding 
kernel function. The aggregated kernel statistics defined in Eq. (8) can 
be projected to the same kernel space through marginalization, and 
therefore the expected kernel statistics can be matched to the observed 
kernel statistics from the available data simply by minimizing the dis-
tance of two elements in the kernel space. Given that the conditioning 
data as Λ = {ζ1,…, ζN} and the evaluation of κ[G v] on Λ as κ[G v|Λ], the 
projection of the aggregated kernel statistics can be defined as 

κ0 [G v |Λ] =
κ[G v;Λ]

∫

[− 1,1]
κ[G v ;Λ]dz0

.
(11) 

Specifically, the statistical learning of high-order spatial statistics 
leads to a minimization problem 

min
p̂

‖ κ0 [G v |Λ] − κ0 [p̂]‖2
H . (12) 

The minimization in Eq. (12) amounts to solve a quadratic problem 
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in a general form Song et al. (2008) as 

min
α

1
2
αT (Q + λ I)α − qT α  

∑n

i=1
αi = 1 (13)  

αi ≥ 0, ∀1 ≤ i ≤ n.

I is the identity matrix and λ is a regularization constant. Matrix Q and 
vector q differ as the kernel function varies. For deriving the entries of 
the matrix Q and vector q, as well as solving the quadratic programming 
problem in the SLM-kernel space, the readers are referred to Yao et al. 
(2020). 

As long as the target conditional probability density functions are 
determined through the above learning process, the rest of simulation 
follows the general procedure of sequential simulation. Hence, the 
kernelized high-order sequential simulation algorithm can be described 
as follows 

(1) Transform sample data and TI to the domain of Legendre poly-
nomials (interval [-1, 1]).  

(2) Create a random path to visit the simulation grid.  
(3) Find the conditioning data inside the neighborhood of the current 

node to simulate as the data event, the spatial template of the 
data event is used to retrieve replicates from the sample data and 
TI.  

(4) Compute the aggregated kernel statistics defined in Eq. (8) from 
the replicates retrieved from the sample data and TI.  

(5) Match the kernel statistics of the target CPDF to the aggregated 
kernel statistics and build the quadratic programming problem 
through Eqs. (12) and (13). Solve the quadratic programming 
problem to derive the target CPDF.  

(6) Generate a random value from the target CPDF and add it to the 
simulation grid.  

(7) Repeat from steps (3) to (6) until all the nodes on the simulation 
grid are simulated.  

(8) Back transform the node attributes of the simulation from the 
interval [-1, 1] to the original data space. 

For the general computational complexity of the computation of 
kernel statistics and statistical learning algorithm, readers are referred 
to Yao et al. (2020). The additional computational cost in the current 
method is from the computation of the aggregated kernel statistics, 
which depends linearly on the number of the scales encountered as well 
as the size of the related training data. 

3. A kernelized high-order simulation program 

The kernelized high-order simulation program is developed as a 
software compatible with the SGeMS platform (Remy et al., 2009). The 
GUI is developed on top of the SGeMS as a plugin that includes the se-
lection of the algorithm and the related input parameters (Fig. 1). All the 
file formats comply to the convention of SGeMS and thus can be visu-
alized through it. The program is written in C++ language and follows 
the generic programming paradigm adopted in the design of GsTL, a 
geostatistical template library (Remy et al., 2002). The main workflow 
contains three major C++ classes which are described as the following. 

3.1. Class kernelsim 

This class is the application class communicating with the SGeMS 
platform through the user parameters, as well as running the simulation 
algorithm from the GUI. The class is derived from a predefined interface 
from the SGeMS platform so that it is compatible to the function calling 

convention of SGeMS. The object from the class kernelsim calls the 
sequential simulation function to start the high-order simulation pro-
cedure. The parameters of the proposed simulation algorithm can either 
be input from the GUI by the user or can be loaded from an XML file. The 
parameters are described in Table 1. 

Fig. 1. GUI of the algorithm panel.  

Table 1 
Parameters description.  

Parameter Range 

Maximum order of Legendre 
polynomials 

10–20 

Maximum number of conditioning 
data 

10–30 

Number of replicates from the TI − 1: take all the replicates n > 0: n replicates 
from the TI 

Hard data usage 0: only use hard data 
1: incorporate both the hard data and the TI 
− 1: not using the hard data (only use the TI) 

Angle tolerance 15–45 
Lag tolerance Application dependent 
Bandwidth Application dependent 
Dimensions of searching window Application dependent 
Number of prototype distributions 10–20 
Number of divisions on the interval 100–200 
Scale parameter of the prototype 

distribution 
0.01–0.05  
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3.2. Class SLM_kde_estimator 

This class serves as the role to estimate the conditional probability 
density function through the learning algorithm. The class 
SLM_kde_estimator first calls the other function class to process the 
replicates which returns the aggregated kernel statistics. The main 
functions inside the class include the selection of the prototype distri-
butions, construction of quadratic programming problem in Eq. (13), 
solving the quadratic programming problem to obtain the target con-
ditional probability density function. 

3.3. Class replicate_processor 

This class is designed for processing the replicates. The conditioning 
data, the sample data, and the TI are used as input to this class. The 
spatial templates of the data events are constructed from the spatial 
configuration of the conditioning data. There are two major member 
functions defined in this class. The first function retrieves the replicates 
from both the sample data and the TI, respectively. The other function 
computes the aggregated kernel statistics from the retrieved replicates 
according to Eq. (8). The aggregated kernel statistics are passed to the 
object of the class. 

SLM_kde_estimator to estimate the target probability density 
function. 

4. Numerical results 

Two separate case studies are carried out to test the developed 
simulation program. The first case study is conducted with a synthetic 
data set to verify the performance of the proposed simulation method. 
The other case study carries out the stochastic orebody modeling at a 

gold deposit, aiming to test the proposed method in a three-dimensional 
space, as well as its practical aspects in real-life mines. 

4.1. Case study with a synthetic data set 

The Stanford V Reservoir data set available in Mao and Journel 
(1999) are used to conduct the simulation in this case study. Specifically, 
two sections are extracted from the data set and the sections consist of 
100 × 100 cells. One section is regarded as the exhaustive image where 
200 points are randomly drawn from this image. The other section is 
rotated 45∘ clockwise so that the channels have distinct preferential 
directions from the exhaustive image after the rotation. The rotated 
section acts as the TI in this case study to represent the situation of the 
statistical conflicts existing between the TI and sample data. The 
exhaustive image, the TI and the sample data are shown in Fig. 2. 

Two realizations using the above sample and the TI are displayed in 
Fig. 3. The visualization of the simulated results demonstrates good 
reproduction of the channels in the preferential orientation along the 
vertical direction from the exhaustive image. In addition, 10 realizations 
are generated to evaluate the overall performance of the simulation 
method in reproducing the low-order statistics. The latter includes the 
proportions and the second-order spatial statistics from the sample data, 
where the histograms and variograms of the 10 realizations are 
compared to those of the sample data, TI and exhaustive image, as 
shown in Fig. 4 and Fig. 5, respectively. The comparison of the histo-
grams shows that the proposed simulation method has a reasonable 
reproduction of proportions from the sample data as well as the 
exhaustive image. The comparison of variograms clearly shows that the 
simulated realizations tend to have the similar second-order spatial 
statistics to the sample data instead of the TI. A further comparison of 
the third- and fourth- order cumulant maps of two separate realizations 

Fig. 2. (a) Exhaustive image; (b) training image; (c) sample data drawn from the exhaustive image.  
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with those of the sample data, the TI and the exhaustive image are 
illustrated in Fig. 6 and Fig. 7, respectively. The spatial template used in 
the third-order cumulant maps includes directions along the X-axis and 

Y-axis and the spatial template of the fourth-cumulant maps includes an 
additional direction along the diagonal. The fourth-order cumulant 
maps are normalized to visually highlight the spatial patterns. Signifi-
cant difference can be seen between the cumulant maps of the TI and 
those of the sample data and exhaustive image. The similarity between 
the cumulant maps of the realizations and the exhaustive image implies 
that the simulation method is able to mitigate the statistical conflicts 
between the samples and the TI, maintaining reasonable reproduction of 
both low-order and high-order spatial statistics from the sample data. 

4.2. Case study at a gold deposit 

In this section, a case study at a gold deposit is presented to docu-
ment practical aspects of the developed simulation program in sto-
chastic orebody modeling. The gold deposit contains samples spatially 
distributed in 407 exploration drill holes as shown in Fig. 8a. The 
samples are composited to 10 m. The simulation grid is defined as blocks 
of size 5 m × 5 m × 10 m. The TI is generated from blasthole data in a 
mined out area of the deposit, and a cross-section is shown in Fig. 8b. 

Cross-sections of two different realizations are shown in Fig. 9. The 
histograms of 10 different realizations are shown in Fig. 10 and the 
comparison shows that the simulation method reproduces the histogram 
of the Au grades from the drill hole samples. The variograms of the same 
set of 10 realizations are shown in Fig. 11. The comparison results also 
show that the variograms of the simulated realizations resemble more 

Fig. 3. Two simulated realizations using the samples and the TI shown in Fig. 2.  

Fig. 4. Histograms of 10 simulated realizations using the samples and the TI 
shown in Fig. 2. 

Fig. 5. Variograms of 10 simulated realizations along (a) X-axis and (b) Y-axis, using the samples and the TI shown in Fig. 2.  
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closely the variograms of the sample data, instead of those of the TI. 
Fig. 12 shows the comparison of third-order cumulant maps of the two 
realizations displayed in Fig. 9 to the third-order cumulant maps of the 
sample data and TI. The fourth-order cumulant maps are compared in 
the same manner and are shown in Fig. 13. Both the third-order or the 
fourth-order cumulant maps demonstrate distinct patterns compatible 
with the corresponding cumulant maps of the sample data. The high- 
order spatial information from the TI is only partly incorporated to 
complement the fine spatial structures of the stochastic orebody models 
generated with the proposed simulation method. Therefore, the high- 
order spatial statistics from the simulated realizations retain the main 
features from sample data, reducing the influence of the possible sta-
tistical conflicts from the TI. 

5. Conclusions 

The present paper presents an extension of the high-order simulation 

method based on the statistical learning framework (Yao et al., 2020). A 
modified concept of aggregated kernel statistics is proposed to incor-
porate the high-order spatial information at two different scales from the 
sample data and TI. Specifically, the aggregated kernel statistics pro-
posed herein contain the high-order spatial information at the coarse 
scales from the sample data with high-order spatial information at the 
finer scales complemented by the TI. These aggregated kernel statistics 
are utilized in a kernelized learning algorithm to develop the high-order 
simulation method, which incorporates high-order spatial statistics from 
both the sample data and the TI. Although the present study only 
considered the data at two different scales, the proposed aggregated 
kernel statistics can be easily extended to scales of more than two, given 
that the resolutions of data sets at different scales progressively increase. 
In practice, it is suitable for applications where data are progressively 
expanding along certain time periods. A high-order simulation program 
based on the above paradigm is developed and described. The simula-
tion program is integrated into the SGeMS platform for a user-friendly 

Fig. 6. Third-order cumulant maps of (a) sample data; (b) exhaustive image; (c) TI; (d) realization in Fig. 3a; (e) realization in Fig. 3b.  
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Fig. 7. Fourth-order cumulant maps of (a) sample data; (b) exhaustive image; (c) TI; (d) realization in Fig. 3a; (e) realization in Fig. 3b.  

Fig. 8. (a) Drill hole samples at a gold deposit; (b) TI derived from the blasthole data in an adjacent area. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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parameter selection and visualization in three-dimensional space. This 
simulation program is utilized here to carry out two different case 
studies. The first case study with the synthetic data set demonstrates the 

capacity of the proposed simulation method in reproducing the low- and 
high-order spatial statistics from the sample data, while significantly 
mitigating the statistical conflicts between the samples and the TI. The 
study at a gold deposit demonstrates the applied aspects of the simula-
tion program when used to simulate pertinent properties of actual 
mineral deposits. 

Computer code availability  

• Name of code: kernelsim  
• Developer: Lingqing Yao  
• Contact details: COSMO – Stochastic Mine Planning Laboratory, 

Dept. of Mining and Materials Engineering, McGill University, 3450 
University Street, Montreal, QC H3A 2A7, Canada  

• E-mail: lingqing.yao@mcgill.ca  
• Year first available: 2020  
• Hardware required: Run on a computer with 4 cores (2.4 GHz each) 

and 8 GB.  
• Software required: Needs SGeMS software  
• Program language: C ++

• Program size: 122 kb  
• Details on how to access the source code: the source files of kernelsim 

can be downloaded from github: https://github.com/yaolq/kernels 
im 

Fig. 9. Two simulated simulations using the sample data and the TI shown in Fig. 8.  

Fig. 10. Histograms of 10 simulated realizations using the samples and the TI 
shown in Fig. 8. 

Fig. 11. Variograms of 10 simulated realizations along (a) E-W and (b) N–S direction, using the samples and the TI shown in Fig. 8.  
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