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Abstract  A training image free, high-order sequential simulation method is pro-
posed herein, which is based on the efficient inference of high-order spatial statistics 
from the available sample data. A statistical learning framework in kernel space is 
adopted to develop the proposed simulation method. Specifically, a new concept of 
aggregated kernel statistics is proposed to enable sparse data learning. The condi-
tioning data in the proposed high-order sequential simulation method appear as data 
events corresponding to the attribute values associated with the so-called spatial 
templates of various geometric configurations. The replicates of the data events act 
as the training data in the learning framework for inference of the conditional prob-
ability distribution and generation of simulated values. These replicates are mapped 
into spatial Legendre moment kernel spaces, and the kernel statistics are computed 
thereafter, encapsulating the high-order spatial statistics from the available data. 
To utilize the incomplete information from the replicates, which partially match 
the spatial template of a given data event, the aggregated kernel statistics combine 
the ensemble of the elements in different kernel subspaces for statistical inference, 
embedding the high-order spatial statistics of the replicates associated with various 
spatial templates into the same kernel subspace. The aggregated kernel statistics are 
incorporated into a learning algorithm to obtain the target probability distribution 
in the underlying random field, while preserving in the simulations the high-order 
spatial statistics from the available data. The proposed method is tested using a syn-
thetic dataset, showing the reproduction of the high-order spatial statistics of the 
sample data. The comparison with the corresponding high-order simulation method 
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using TIs emphasizes the generalization capacity of the proposed method for sparse 
data learning.

Keywords  High-order sequential simulation · Statistical learning · Spatial 
statistics · Kernel space

1  Introduction

Stochastic simulation methods are used to quantify the uncertainty of spatially dis-
tributed attributes of geological and other natural phenomena. It is well known that 
the conventional second-order stochastic simulation methods are limited in repro-
ducing the complex patterns or nonlinear features exhibited in the spatial attributes 
of interest (Journel and Deutsch 1993; Xu 1996; Journel 2005). The so-called mul-
tiple point simulation (MPS) methods (Guardiano and Srivastava 1993; Strébelle 
2000,  2002; Journel 2003; Arpat 2005; Zhang et al. 2006; Wu et al. 2008; Remy 
et al. 2009; Mariethoz et al. 2010; Mariethoz and Caers 2014) have been developed 
to address the limitation of conventional simulation methods based on the concept of 
multiple-point statistics. The multiple-point simulation framework introduced train-
ing images (TI) as statistical analogs of the spatial attributes under consideration. 
The multiple-point statistics are either (a) captured by occurrences of data events 
formed by indicators at multiple locations inside the so-called spatial templates 
when the spatial attributes are categorical, or (b) generalized to continuous data as 
the pattern similarity among patches from the TI and the proceeding simulation. 
The multiple-point statistics described in the MPS methods are based on a certain 
spatial template, however, are limited given that they do not consistently consider 
the lower-order spatial statistics in the related sub-templates. In addition, although 
the utilization of a TI as prior information to account for multi-point interactions of 
spatial attributes is conceptually appealing and justified (Journel 2003), generally, 
the information from TI is not conditioned to the available data. Thus, the potential 
statistical conflicts existing between the sample data and the TI is a hindrance for the 
TI-driven MPS methods to reproduce the spatial patterns properly. This issue seems 
more prominent when the sample data are relatively dense, as in mining applica-
tions (Goodfellow et al. 2012). Improvements of the MPS realizations may be pos-
sible by either transforming the original TI to increase its consistency to the actual 
data (Straubhaar et al. 2019), or by explicitly imposing constraints on the realiza-
tions to ameliorate the potential conflicts of the simulation and the TI (Shahraeeni 
2019). However, these improvements do not change the TI-driven nature of the MPS 
methods.

The high-order simulation methods provide a new framework to simulate com-
plex spatial patterns, addressing the drawbacks in MPS methods as discussed in the 
related publications (Dimitrakopoulos et  al. 2010; Mustapha and Dimitrakopou-
los 2010a, 2011; Minniakhmetov and Dimitrakopoulos 2016, 2017; Minniakhme-
tov et  al. 2018; Yao et  al. 2018, 2020; de Carvalho et  al. 2019). The high-order 
simulation methods equip the multiple-point spatial structures with well-defined 
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mathematical entities, such as spatial cumulants or high-order spatial moments 
(Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos 2010b; Minniakhme-
tov et  al. 2018). Related program for computing spatial cumulants is available 
(Mustapha and Dimitrakopoulos 2010a), and its computational efficiency can be 
further improved by parallelization using GPU (Li et  al. 2014). The random field 
model in the high-order simulation framework makes no assumption on any specific 
probability distribution. Instead, a Legendre polynomial expansion series is adopted 
to approximate the underlying distribution, where spatial cumulants are quantified 
to infer the expansion coefficients (Mustapha and Dimitrakopoulos 2010a, 2011). 
To cope with the statistical conflicts between the samples and the TI, the high-order 
simulation methods take into account both the high-order spatial statistics from the 
sample data and the TI. However, the latter ones are only incorporated when the 
replicates from the sample data are insufficient for inference and, therefore, limit 
the influence of the TI on the realizations (Mustapha and Dimitrakopoulos 2010a, 
2011). Minniakhmetov and Dimitrakopoulos (2017) propose a high-order simula-
tion method without TI, which uses instead special relations of high-order indi-
cator moments in boundary conditions related to a certain spatial template. How-
ever, these mathematical relations can only be established for categorical random 
variables. Yao et al. (2020) propose a statistical learning framework of high-order 
simulation in kernel space by constructing a so-called spatial Legendre moment 
kernel from a new computational model of high-order simulation based on spatial 
Legendre moments (Yao et al. 2018). The proposed statistical learning framework 
in Yao et al. (2020) demonstrates the advantage of its generalization capacity with 
regards to improving of the numerical stability, as compared with the previous high-
order simulation methods. This generalization capacity also mitigates the statistical 
conflicts between the samples and the TI. This is due to the fact that the high-order 
spatial statistics are adjusted to the target probability distribution through the learn-
ing process, as opposed to directly being incorporated into the coefficients of poly-
nomial expansion series as with the other methods. The simulation under a statistical 
learning framework (Yao et al. 2020) proceeds sequentially according to a random 
path based on the sequential decomposition of the multivariate distribution of the 
random field model (Rosenblatt 1952; Journel 1994). Specifically, the replicates are 
mapped onto the spatial Legendre moment space and the empirical kernel statistics 
are computed thereafter. The target probability distributions are also embedded into 
the same kernel space to obtain the expected kernel statistics. Matching these two 
elements in the kernel space leads to a minimization problem in the quadratic form 
determined by the kernel function. Solving the minimization problem leads to tar-
get probability distributions that comply with the high-order spatial statistics of the 
available data.

The present paper proposes fundamental adjustments of the above statistical 
learning framework so that it becomes more suitable for sparse data learning, thus 
allowing the development of a TI-free high-order simulation method for the continu-
ous spatial attributes. The motivation of this development is to utilize the more reli-
able sample data for inference of high-order spatial statistics and avoid the potential 
conflicts from using the TI, while addressing the issue of data sparsity. Since retriev-
ing replicates that fully match the spatial template of the data events is difficult due 
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to the sparsity of the sample data, it is worth noting that replicates that are partially 
matched to the spatial template may exist. These partially matched replicates, nev-
ertheless, provide useful and relevant information to the related statistical inference, 
while determining how to utilize this incomplete information remains a challenge. 
The above-mentioned matters are addressed herein by a proposed concept of aggre-
gated kernel statistics. More specifically, each spatial template is associated with 
a certain kernel subspace, such that any replicate associated with the same spatial 
template can be mapped onto an element of the corresponding kernel space. Accord-
ingly, these mapped elements in the kernel subspaces are utilized to compute the 
kernel statistics. The kernel statistics in a set of kernel subspaces are combined to 
determine the aggregated kernel statistics through the relations introduced in this 
paper. Eventually, the aggregated kernel statistics are embedded into the kernel sub-
space corresponding to the conditional probability distribution encountered in the 
high-order sequential simulation framework, and the statistical learning algorithm is 
applied to approximate a conditional probability distribution.

The remainder of the paper is organized as follows. Firstly, the mathematical con-
cepts and the proposed method are presented. Next, a case study from a synthetic 
dataset is used to assess the performance of the proposed method and demonstrate 
its practical aspects. Conclusions follow.

2 � Method

Consider the spatial attributes of interest distributed on a discrete grid as a random 
field model denoted by Z(u) with u =

{
u1, u2,… , un

}
 corresponding to various 

locations within the grid, then Z(u) =
{
Z
(
u1

)
, Z

(
u2

)
,… , Z

(
un

)}
 comprises a mul-

tivariate probability distribution f
Z
 given that Z

(
ui

)
 representing random variables 

at location ui (i = 1,… , n) . Under the sequential simulation framework (Journel 
1994), the joint probability distribution f

Z
 is decomposed into a sequence of condi-

tional probability distributions following a random path to visit the entire simulation 
grid, and random values are drawn from these conditional probability distributions 
sequentially along the random path to generate one realization. Both the available 
sample data and the previous simulated attribute values are considered as the condi-
tioning data throughout the simulation process.

Without loss of generality, suppose that the current attribute Z
(
u0

)
 to be 

simulated locates at u0 , and the informed data 
{
�1,… , �N

}
 at the surround-

ing locations u0 + h1,… , u0 + hN , consist of a data event as the condition-
ing data. From the geometric configuration of the data event, a spatial template 
T =

{
u0, u0 + h1,… , u0 + hN

}
 can be determined with the distance vectors 

h1,… , hN pointing outwards from the center u0 to the surrounding locations. Let 
the conditional probability density function (CPDF) be denoted as f (z0|�1,… , �N) . 
The key task to derive the CPDF is achieved by a statistical learning algorithm in 
kernel space herein. The related replicates associated with template T are retrieved 
from the sample data, and these replicates are used as the training data of statistical 
learning to infer the underlying probability distribution. Specifically, the retrieved 
replicates are mapped to elements in kernel spaces to build kernel statistics carrying 
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the high-order spatial information from the replicates. The aggregated kernel statis-
tics are proposed, allowing to incorporate the high-order spatial statistics from the 
ensemble of replicates with different spatial configurations. The target CPDF is then 
achieved by the statistical learning algorithm approaching the aggregated kernel sta-
tistics from the sample data.

2.1 � Aggregation of Spatial Legendre Kernel Subspaces and Kernel Statistics

2.1.1 � Spatial Legendre Moment Kernel Subspaces

The kernel space is a Hilbert space defined through a positive definite kernel func-
tion. Legendre polynomials are orthogonal polynomials defined on interval [−1, 
1]. The Legendre polynomial expansion series can approximate arbitrary piecewise 
continuous function and are used for approximation of probability density function 
in high-order simulations (Mustapha and Dimitrakopoulos 2010a). The spatial Leg-
endre moment reproducing kernel (SLM-kernel) (Yao et al. 2020) is derived from a 
new computational model for high-order simulation (Yao et al. 2018) based on the 
Legendre polynomial series. The SLM-kernel carries the information of high-order 
spatial statistics so that the density estimation in the high-order sequential simula-
tion could be achieved by a statistical learning process in kernel space. The SLM-
kernel can be defined to associate a kernel subspace to random variables within a 
certain spatial template. Given a set of random variables V =

{
Z0, Z1,… , ZN

}
 with 

nodes corresponding to spatial template T =
{
u0, u0 + h1,… , u0 + hN

}
 , the ker-

nel subspace can be determined by a spatial Legendre moment reproducing kernel 
(SLM-kernel) as

where N corresponds to size of the spatial template. 
Z =

(
z0, z1,… , zN

)
,Z

� =
(
z�
0
, z�

i
,… , z�

N

)
 are attribute values corresponding to spatial 

template T and Pw(⋅) is the Legendre polynomial of order w and W is the maxi-
mal order of Legendre polynomials under consideration. Let the original data space 
denote as � and the kernel space associated to kernel K denote as H , the canoni-
cal feature map (Steinwart and Christmann 2008), �(t) ∶ � → H, t ↦ K(., t),∀t ∈ � , 
defines a valid feature map that takes an element from the original data space to an 
element in the kernel subspace. In other words, after the feature mapping, each ele-
ment in the original data space � has a “representer” in the kernel space H.

2.1.2 � Aggregated SLM‑Kernel Statistics

If a training image (TI) is provided as an exhaustive dataset, most of the repli-
cates of a data event fully match the spatial configuration of the data event while 
the partially matched ones are negligible. The replicates of a data event from the 
sample data, however, include both fully matched and partially matched replicates 

(1)KV

(
Z,Z

�
)
=

N∏
i=0

[
W∑
w=0

(
w +

1

2

)
Pw

(
zi
)
Pw

(
z�
i

)]
,
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that correspond to different configuration of spatial templates. Therefore, the rep-
licates are respectively mapped to different kernel subspaces. Kernel statistics, 
in general, means either the empirical statistics from the mapped elements or the 
expected statistics in the kernel subspaces, such as empirical mean and expecta-
tion. Equation  (1) suggests that replicates associated with different spatial tem-
plates would be mapped to kernel subspaces with different kernel functions. The 
kernel statistics associated with different spatial templates thus come from differ-
ent subspaces and need to be combined appropriately to get the aggregated kernel 
statistics for the inferring of underlying probability distribution afterwards.

For convenience, the following notation is defined to clarify the relations 
between the spatial templates. Given a template T =

{
u0, u0 + h1,… , u0 + hN

}
 

as a set of locations with the center node denoted as center(T) = u0 , the size of 
the T is the same as the number of the elements in it and is denoted as |T| , i.e., 
|T| = N + 1 here. Since the replicates of the data events are matched by their rela-
tive positions to the center node regardless of the location of the center node, 
the relations between the spatial templates are defined in the same manner. Let 
Ta =

{
ua, ua + h1,… , ua + hNa

}
 and Tb =

{
ub, ub + h1,… , ub + hNb

}
 be the two 

spatial templates under consideration, then the relations between Ta and Tb are 
the following:

(1)	 If ||Ta
|| = ||Tb

|| , ∀ta ∈ Ta , ∃!tb ∈ Tb , such that ta − center
(
Ta

)
= tb − center

(
Tb

)
 , 

then Ta and Tb have the same geometry configuration and the identical relation 
is expressed as Ta = Tb.

(2)	 If ||Ta
|| ≤ ||Tb

|| , ∀ta ∈ Ta , ∃!tb ∈ Tb , such that ta − center
(
Ta

)
= tb − center

(
Tb

)
 , 

then Tb contains the geometry configuration as a subset and the relation is 
expressed as Ta ⊆ Tb or Tb ⊇ Ta . If ||Ta

|| < ||Tb
|| strictly, the above relation is 

expressed as Ta ⊂ Tb or Tb ⊃ Ta.

Suppose that the spatial template of the conditioning data is 
T =

{
u0, u0 + h1,… , u0 + hN

}
 and that the nodes are ordered increasingly accord-

ing to their distances from the center. By dropping the furthest node from the 
template T each time, a hierarchical set of spatial templates can be defined as

and the corresponding sets of random variables as

These spatial templates consist of the possible spatial configurations of the par-
tially matched replicates considered in this paper, and the entire set is denoted as 
G = ∪N

i=0
vi.

Let the training data from the replicates associated with the G be denoted as G . 
In this paper, only replicates with spatial templates that satisfy Eqs.  (2) and (3) 
are considered, to simplify the implementation of the proposed method. A more 
general derivation can be found in the Appendix. For any spatial template v ∈ G , 

(2)vN = T ⊇ vN−1 = T�
{
u0 + hN

}
⊇,⋯ ,⊇ v1 =

{
u0, u0 + h1

}
⊇ v0 =

{
u0

}
,

(3)V0 =
{
Z0
}
⊆ V1 =

{
Z0, Z1

}
⊆,⋯ ,⊆ VN =

{
Z0, Z1,… , ZN

}
.
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the set of random variables associated with v is denoted as V  and the replicates 
corresponding to the spatial template v are noted as Gv . The size of the set Gv 
is noted as ||Gv

|| representing the number of replicates associated with the spatial 
template v . And let the total number of replicates associated with G be |G| . An 
arbitrary element � t,v ∈ Gv represents a sequence of attribute values as

where �t,i are the values from the replicate at the location of node i in the spatial tem-
plate v and 1 ≤ t ≤ ||Gv

|| corresponds to one of the replicates. The element mapped to 
the corresponding kernel subspace from �v can be represented as

which is a function element in the kernel space. With the replicates in Gv mapping to 
the kernel space with kernel KV , the empirical kernel mean �[Gv] can be defined as

For any two nodes v, v� ∈ G and v′ ⊇ v , there would be a hereditary subset of rep-
licates that are generated from the projection of v′ onto v by restricting the training 
data Gv′ to the spatial template v , and denote this hereditary subset as Gv′|v . Obvi-
ously, Gv�|v = Gv if v� = v . Given that v′ ⊇ v , the projected elements in the original 
data space, their mapped elements in the kernel spaces and the kernel statistics can 
be defined similarly as

For convenience of notation, �[⋅] generally represents an element in the kernel space 
with certain kernel function K that is mapped from the original data space. For 
instance, �

[
� t,v′|v

]
 in Eq.  (8) appears as an element embedded in the kernel space 

from a single replicate � t,v′|v , and �
[
Gv′|v

]
 is the sample average of a group of ele-

ments embedded into the kernel space from a set of samples Gv′|v . As the kernel 
space is also a vector space, the kernel statistics �

[
Gv′|v

]
 also lies in the same kernel 

space as an element.
Then, the aggregated kernel statistics �[G] based on the replicates associated to 

the ensemble of various spatial templates in G can be defined as

(4)� t,v =
{
�t,i ∶ i ∈ v

}
,

(5)�
[
� t,v

]
= KV

(
� t,v, ⋅

)
,

(6)�
[
Gv

]
=

1

||Gv
||
∑|Gv|

t=1
�
[
� t,v

]
=

1

||Gv
||
∑|Gv|

t=1
KV

(
� t,v, ⋅

)
.

(7)� t,v�|v =
{
�t,i ∶ i ∈ v�|v, 1 ≤ t ≤ ||Gv�

||
}
,

(8)�
[
� t,v�|v

]
= KV

(
� t,v�|v, ⋅

)
,

(9)�
[
Gv�|v

]
=

1

||Gv�
||
|Gv� |∑
t=1

�
[
� t,v�|v

]
=

1

||Gv�
||
|Gv� |∑
t=1

KV

(
� t,v�|v, ⋅

)
.
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Combined with Eq. (9), it can be also written as

2.2 � Sequential Simulation via Statistical Learning with Aggregated Kernel 
Statistics

The general concept of statistical learning refers to learning any functional depend-
ency from a certain dataset without prior knowledge of the data (Vapnik 1995, 
1998). Herein, the statistical learning framework for the high-order sequential simu-
lation, specifically, means to learn the conditional probability distribution based 
on the observed replicates from the sample data. The learning procedure can be 
achieved conveniently through an optimization algorithm in the SLM-kernel space. 
In fact, the kernel mean defines a feature map to embed probability distribution to 
the associated kernel space (Song et  al. 2009; Smola et  al. 2007; Muandet et  al. 
2016). The empirical mean in the kernel space embeds the empirical probability dis-
tribution. Similarly, the expectational mean in the kernel space given a certain prob-
ability distribution embeds the distribution as an element in the kernel space. Mini-
mizing the distance between the two above-mentioned elements in the kernel space 
leads to matching of high-order spatial statistics of the target distribution to those of 
the available data with the kernel space defined by the SLM-kernel.

Equation  (11) defines a feature map through the aggregated kernel statistics 
from an ensemble of kernel subspaces. Suppose that the conditioning data are 
Λ =

{
�1,… , �N

}
 , and define the conditioned kernel statistics �[G;Λ] as

Furthermore, marginalization of �[G;Λ] can be defined as

The emphasis herein, is to derive a feasible computational model for the marginal-
ized kernel statistics, �[G|Λ] , defined in Eq. (13). An interesting property of SLM-
kernel from its definition is

(10)�[G] =

N�
n=1

1∑N

i=n

���Gvi

���
⋅

�
N�
i=n

(�
�
Gvi�vn

�
− �

�
Gvi�vn−1

�
)
���Gvi

���
�
.

(11)�[G] =

N�
n=1

1∑N

i=n

���Gvi

���
⋅

⎛
⎜⎜⎜⎝

N�
i=n

���Gvi

����
t=1

KVn

�
� t,vi�vn , ⋅

�
− KVn−1

�
� t,vi�vn−1 , ⋅

�⎞⎟⎟⎟⎠
.

(12)�[G;Λ] =

N�
n=1

1∑N

i=n

���Gvi

���
⋅

⎛⎜⎜⎜⎝

N�
i=n

���Gvi

����
t=1

KVn

�
� t,vi�vn ,Λ

�
− KVn−1

�
� t,vi�vn−1 ,Λ

�⎞⎟⎟⎟⎠
.

(13)�[G|Λ] = �[G;Λ]

∫
[−1,1]

�[G;Λ]dz0
.
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where V∖U is the set difference between the set of random variables V  and U with 
V ⊇ U . It means the high-order dimensional kernels could be built incrementally 
from the lower-dimensional ones as

where Ui are disjoint subsets of V  and V = ∪n
i=1

Ui.
Obviously, V0 = {Z0} is a single element set and the kernel KV0

 can be written as

Noting the orthogonal property of Legendre polynomials, it is easy to derive that

and therefore, there is

According to Eq. (16), the result of Eq. (19) can be obtained from the intermediate 
result of computing Eq. (12). In the end, �[G|Λ] can be expressed in the form as

where �t are constant coefficients that can be computed through Eqs. (13) and (18). 
Equation  (19) is a linear combination of elements in kernel space determined by 
kernel KV0

 , and therefore marginalization of the aggregated kernel statistics, �[G|Λ] , 
embeds the empirical conditional probability distribution to the corresponding ker-
nel space with kernel KV0

 . In other words, �[G|Λ] is an element in the kernel space 
containing the high-order spatial information from the replicates found in the sample 
data given the conditioning data as Λ . The purpose of the proposed method is to find 
a target distribution p̂ as the CPDF at each node encountered in the sequential simu-
lation procedure. The expected kernel statistics with distribution p̂ can be defined as

where �
(
z�
0

)
= KV0

(
z�
0
, z0

)
 defines the feature mapping function in the kernel space 

associated to kernel KV0
 , and Ez�

0
∼p̂[�

(
z�
0

)
] means the expectation of the features 

(14)KV = KV�UKU

(15)KV =
∏n

i=1
KUi

,

(16)KV0

(
z0, z

�
0

)
=

W∑
w=0

(
w +

1

2

)
Pw

(
z0
)
Pw

(
z�
0

)
.

(17)∫ [−1,1]

KV0

(
�t,0, z0

)
dz0 = 1,

(18)

∫ [−1,1]

�[G;Λ]dz0 =

N�
n=1

1∑N

i=n

���Gvi

���
⋅

⎛⎜⎜⎜⎝

N�
i=n

���Gvi

����
t=1

KVn�V0

�
� t,vi�vn ,Λ

�
− KVn−1�V0

�
� t,vi�vn−1 ,Λ

�⎞⎟⎟⎟⎠

(19)�[G|Λ] =
|G|∑
t=1

�tKV0

(
�t,0, z0

)
,

(20)�
[
p̂
]
= Ez�

0
∼p̂

[
�
(
z�
0

)]
= Ez�

0
∼p̂

[
KV0

(
z�
0
, z0

)]
,
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mapped from elements in the original data space with a probability distribution p̂ . 
Thus, the two elements embedding into the kernel space H associated to kernel KV0

 
are represented as �[G|Λ] and �

[
p̂
]
 , corresponding to the replicates from the sample 

data and the target CPDF in the simulation, respectively. Given a convex space P0 as 
the solution space of this target distribution p̂ , minimizing the difference between 
these two elements �[G|Λ] and �

[
p̂
]
 results in a target CPDF that matches the high-

order spatial statistics of the replicates from the sample data. Therefore, the target 
CPDF p̂ can be solved by the below minimization problem as

The minimization in Eq. (21) can be expanded to a quadratic programming problem 
by noticing that the inner products can be expressed as kernel functions. The details 
to solve the problem given p̂ as a convex combination of certain prototype distribu-
tions is established in Yao et al. (2020) and thus will not be repeated here. It should 
be noted that although Eq. (19) appears in a similar form as Eq. (16) in Yao et al. 
(2020), the coefficients �t in Eq. (19) depend on the aggregated kernel statistics with 
different spatial templates, which is critical for the utilization of information from 
partially matched replicates.

With the computation of aggregated kernel statistics of various spatial tem-
plates and the auxiliary procedure to estimate the conditional probability distri-
bution, the sequential simulation method via statistical learning with aggregated 
kernel statistics can be described as the following:

(1)	 Transform the sample data to the interval [− 1, 1] of Legendre polynomials.
(2)	 Initialize a random path to visit the simulation grid.
(3)	 For each node to be simulated, find the conditioning data as the data event. The 

nodes from the spatial template of the data event are ordered increasingly from 
their distances to the center node.

(4)	 For each distance vector in the spatial template, allow certain angle tolerance 
� and lag tolerance Δh as well as a bandwidth b to find matched node from the 
samples (Fig. 1). Start from the distance vector nearest to the center node and 
go through all the distance vectors orderly until no matching node is found from 
the samples. Scan the entire sample dataset and store the replicates to separate 
lists according to the number of nodes matched to the spatial template of the 
data event.

(5)	 Compute the aggregated kernel statistics from the partially matched replicates 
retrieved in Step (4) following Eqs. (12) and (18).

(6)	 Compute the marginalized kernel statistics defined by Eq. (13) and the feature 
map �[G|Λ] defined by Eq. (19), solve the minimization problem in Eq. (21) to 
get an estimated conditional probability distribution. Draw a random sample 
from the estimated probability distribution and add the value to the simulation 
grid.

(7)	 Repeat from step (3) until all the nodes of the simulation grid are visited.

(21)min
p̂
‖�[G�Λ] − �

�
p̂
�‖2

H
.
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(8)	 Back transform the simulate grid from the interval [− 1, 1] to generate a realiza-
tion in the original data space.

3 � Case Study with a Synthetic Dataset

The synthetic data are a horizontal section extracted from a fully known reservoir 
dataset of porosity (Mao and Journel 1999). Two different sample datasets are drawn 
from the section representing different sampling density. The dataset DS-1 contains 
samples randomly drawn from 200 locations, and the dataset DS-2 has 400 samples 
with regular spacing. Figure 2 shows the samples, and Fig. 3 displays the exhaustive 
image.

Two realizations of the proposed high-order simulation method using DS-1 and 
DS-2 are demonstrated in Fig. 4a–d, respectively. The same random paths are used 
for the two realizations for comparison of the impact of sampling density on the sim-
ulation method. The visual comparison with the exhaustive image shows that both 
realizations reproduce the preferential channels along the vertical direction. This 
shows that the proposed method has the generalization capacity to provide stability 
of simulation with relatively sparse data. On the other hand, the realizations using 
DS-2 as the sample data retain more fine structures as well as the overall spatial 
connectivity than the other realization. The reason is that a sparser dataset in general 
has fewer replicates for small structures and, thus, the estimated high-order spatial 
statistics have to be generalized to stabilize the statistical inference in the situation 
that the replicates are fewer. Generally speaking, as the amount of data increases, the 
models tend to have more variations in finer spatial structures and vice versa.

Fig. 1   Tolerances along each distance vector of the spatial template for retrieving replicates from the 
samples
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To further demonstrate the TI-free feature of the proposed simulation method, 
two realizations of the high-order simulation based on statistical learning using a TI 
from Yao et al. (2020) are displayed in Fig. 4e, f, for comparison. The results show 
that the TI adds complementary information to finer structures of the realizations. 
As the samples are relatively dense, the contribution of the additional information 
from the TI also becomes less important since the TI-free simulation method can 
generate more details from the available sample data. The comparison of histograms 
of ten realizations with DS-1 and DS-2 as the sample data with the histograms of 
the two sample datasets, as well as the exhaustive image, is demonstrated in Fig. 5. 
In both cases, the histograms of the realizations follow the histograms of the sample 
datasets, whereas the one with dense data resembles more the exhaustive image, as 
expected.

The variograms of ten realizations based on the proposed simulation method 
using the two different sample datasets are shown in Fig. 6, showing that the sim-
ulations reproduce the variograms of the samples. The third-order cumulant maps 

Fig. 2   Two different sample datasets. a DS-1 with 200 randomly drawn samples, b DS-2 with 400 sam-
ples

Fig. 3   A horizontal section 
of porosity attribute from a 
reservoir, acting as the exhaus-
tive image
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of the sample data and the corresponding realizations with the proposed simulation 
method are shown in Fig.  7. Furthermore, the fourth-order cumulate maps of the 
sample data and the realizations are displayed in Fig. 8 for comparison. In this exam-
ple, the third-order cumulant maps are calculated based on a spatial template along 

Fig. 4   Realizations of TI-free high-order simulation with the sample data DS-1 in a, b and with the sam-
ple data DS-2 in c, d; for comparison, realizations of high-order simulation using a TI with the sample 
data DS-1 in e and with the sample data DS-2 in f (from Yao et al. 2020)
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Fig. 5   Histograms of the sample data, the exhaustive image, and ten realizations using a DS-1 and b 
DS-2 as the sample data, respectively

Fig. 6   Variograms of ten realizations. a, b Along X and Y axis with DS-1 as the sample data; c, d along 
X and Y axis with DS-2 as the sample data.
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Fig. 7   Third-order cumulant maps of a DS-1, b DS-2, c exhaustive image, d, e realizations in Fig. 4a, b 
with DS-1 as the sample data, f, g realizations in Fig. 4c, d with DS-2 as the sample data; h, i realizations 
of high-order simulation using a TI with DS-1 and DS-2 as the sample data, respectively (from Yao et al. 
(2020))
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X and Y axes with varied lengths in both directions. The spatial templates of the 
fourth-order cumulants include extra distance vectors along the diagonal direction in 
addition to the two axes directions. The fourth-order cumulant maps are also scaled 
by their deviations for better contrast of the patterns. In general, these high-order 
cumulant maps represent more complex spatial patterns that characterize interrela-
tions among multiple points. The cumulant maps of two representative realizations 

Fig. 8   Fourth-order cumulant maps of a DS-1, b DS-2, c exhaustive image; d, e realizations in Fig. 4a, 
b with DS-1 as the sample data; f, g realizations in Fig. 4c, d with DS-2 as the sample data; h, i realiza-
tions of high-order simulation using a TI with DS-1 and DS-2 as the sample data, respectively (from Yao 
et al. 2020)
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from the high-order simulation based on statistical learning using a TI are displayed 
in the bottom of Figs. 7 and 8 for comparison with the results from the proposed 
method. The comparisons of the cumulant maps suggest that the proposed method 
is able to reproduce the high-order spatial statistics of the sample data as well as 
the exhaustive image. The results above show that the proposed approach leads to a 
reliable inference on the underlying random field model, given a reasonable number 
of samples available, and thus avoids the potential statistical conflicts using a TI to 
carry out the high-order simulation.

4 � Conclusions

This paper presents a high-order sequential simulation approach based on statistical 
learning with aggregated kernel statistics from a set of sample data. Regarding the spar-
sity of the sample data used to infer the high-order spatial statistics of the underlying 
random field model, the partially matched replicates of the data events encountered 
in the simulation are mapped into kernel subspaces. The latter kernel subspaces are 
defined by different kernel functions corresponding to different configurations of spa-
tial templates to create an ensemble set of elements in kernel subspaces. The ensem-
ble of elements in the kernel subspaces are aggregated to construct the new concept 
of aggregated kernel statistics. The aggregated kernel statistics are crucial in building 
a new feature map to consider partially matched replicates together in the same ker-
nel space of the conditional probability distribution. In addition, the statistical learn-
ing framework for high-order simulation offers generalization capacity for sparse 
data learning. The combination of the aggregated kernel statistics with the statistical 
learning thus provides a new way to derive the proposed TI-free high-order simula-
tion method. The proposed method tackles the issue of statistical conflicts between the 
sample data and the TI. The case study from the fully known dataset shows that the 
proposed method reproduces both lower-order and higher-order spatial statistics in gen-
erated realizations. Even with relatively sparse samples, the proposed method retains 
the main spatial patterns of the available data, which is characterized by high-order spa-
tial statistics. However, the simulation results of the proposed method generally exhibit 
higher discontinuity in the short range than the simulation results using a TI. In contrast 
to the variograms in the second-order geostatistical simulation methods, the high-order 
spatial statistics are taken into account through a statistical learning process. This is 
also different from the B-Spline model to fit the high-order spatial moments of categor-
ical data developed in Minniakhmetov and Dimitrakopoulos (2017). Specifically, the 
boundary conditions that are important to build the B-Spline model in Minniakhmetov 
and Dimitrakopoulos (2017) cannot apply to continuous data. The high-order spatial 
statistics of the random field are rather equipped by implicit modeling from the learn-
ing algorithm in the current approach, while the accuracy of modeling is data depend-
ent. A possible strategy for further improvement of the results could be utilization 
of short-range high-order spatial information from other complementary sources. It 
should be noted that the concept of aggregated kernel statistics is quite flexible and can 



	 Math Geosci

1 3

accommodate information from different data sources with various spatial configura-
tions. This represents a potential direction for future research.
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Appendix: Derivation of Aggregated Kernel Statistics

The more general relations among the replicates associated to various spatial templates 
can be analogous to a flow network G with a source corresponding to the full spatial 
template vN and a sink corresponding to a single center node v0 . The arrows represent 
the subset relation between two spatial templates. In general, the replicates associated 
with a certain spatial template v ∈ G receive inflows from the ancestor nodes corre-
sponding to the subsets of replicates projected on v from those replicates with a larger 
size template. At the same time, the replicates associated with a certain spatial template 
v ∈ G also has outflows to their direct children nodes, which can be represented as 
Ov = {v�� ⊂ v,∄r ∈ Gs.t.v�� ⊂ r ⊂ v} . The idea of deriving the aggregated kernel sta-
tistics is to isolate the computation of kernel statistics with the spatial template v′′ from 
the current spatial template v , while augmenting the kernel statistics from its ancestor 
templates. Thus, for the ensemble replicates G with spatial templates in G , the aggre-
gated kernel statistics are computed as

The computation will have to traverse all the nodes in graph G . A formal proof of 
Eq.  (22) originates from the equivalency of SLM-kernel statistics and the compu-
tational model of probability density approximation based on spatial Legendre 
moments, as detailed in Yao et al. (2018, 2020). For a certain spatial template v of 
size (n + 1) and the corresponding replicates as Gv , the kernel statistics defined in 
Eq. (6) are equivalent to

(22)
𝜅[G] =

�
v∈G

1∑
v�⊇v

��Gv�
��

�
v� ⊇ v

v�� ∈ Ov

�
𝜅
�
Gv��v

�
− 𝜅

�
Gv�v��

��
⋅
��Gv�

��.

(23)�
[
Gv

]
=
∑W

w0=0

∑W

w1=0
⋯

∑W

wn=0
Lw0w1⋯wn

∏n

i=0
Pwi

(
zi
)
,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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 where W is the maximal degree of polynomial series and Pwi
 is the Legendre poly-

nomial of order wi . Lw0w1⋯wn
 is the spatial Legendre moment and can be numerically 

approximated as (Yao et al. 2018)

where �t,i means the attribute value of node i in t-th replicate from Gv . Considering 
another spatial template v′ of size (n� + 1) with v′ ⊇ v and n′ > n , one can see that

On the other hand, any spatial Legendre moments containing nodes 
n < mj ≤ n�(1 ≤ j ≤ n� − n) can only be computed from the replicates Gv′ but exclud-
ing Gv . Note Eq.  (23) that these computations can be implemented by the differ-
ence of kernel statistics corresponding to the spatial templates v′ and v , and the gen-
eralization to Eq.  (22) is straightforward. The current paper considers one branch 
as Eq. (2) implies. And with this assumption, Eq. (10) can be easily derived from 
Eq. (22) (Fig. 9).
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