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Abstract: This paper presents a new truck dispatching policy approach that is adaptive given different
mining complex configurations in order to deliver supply material extracted by the shovels to the
processors. The method aims to improve adherence to the operational plan and fleet utilization in a
mining complex context. Several sources of operational uncertainty arising from the loading, hauling
and dumping activities can influence the dispatching strategy. Given a fixed sequence of extraction
of the mining blocks provided by the short-term plan, a discrete event simulator model emulates the
interaction arising from these mining operations. The continuous repetition of this simulator and a
reward function, associating a score value to each dispatching decision, generate sample experiences
to train a deep Q-learning reinforcement learning model. The model learns from past dispatching
experience, such that when a new task is required, a well-informed decision can be quickly taken.
The approach is tested at a copper—gold mining complex, characterized by uncertainties in equipment
performance and geological attributes, and the results show improvements in terms of production
targets, metal production, and fleet management.

Keywords: truck dispatching; mining equipment uncertainties; orebody uncertainty; discrete event
simulation; Q-learning

1. Introduction

In short-term mine production planning, the truck dispatching activities aim to deliver
the supply material, in terms of quantity and quality, being extracted from the mining
fronts by the shovels to a destination (e.g., processing facility, stockpile, waste dump).
The dispatching decisions considerably impact the efficiency of the operation and are
of extreme importance as a large portion of the mining costs are associated with truck-
shovel activities [1-4]. Truck dispatching is included under fleet optimization, which also
comprises equipment allocation, positioning shovels at mining facies and defining the
number of trucks required [2,5,6]. Typically, the truck dispatching and allocation tasks
are formulated as a mathematical programming approach whose objective function aims
to minimize equipment waiting times and maximize production [7-11]. Some methods
also use heuristic rules to simplify the decision-making strategy [12-14]. In general, a
limiting aspect of the structure of these conventional optimization methods is related to
the need to reoptimize the model if the configuration of the mining complex is modified,
for example, if a piece of fleet equipment breaks. Alternatively, reinforcement learning
(RL) methods [15] provide means to make informed decisions under a variety of situations
without retraining, as these methods learn from interacting with an environment and adapt
to maximize a specific reward function. The ability to offer fast solutions given multiple
conditions of the mining complex is a step towards generating real-time truck dispatching
responses. Additionally, most methods dealing with fleet optimization are applied to single
mines, whereas an industrial mining complex is a set of integrated operations and facilities
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transforming geological resource supply into sellable products. A mining complex can
include multiple mines, stockpiles, tailing dams, processing routes, transportation systems,
equipment types and sources of uncertainty [16-27].

The truck-dispatching model described herein can be viewed as a particular applica-
tion belonging to the field of material delivery and logistics in supply chains, commonly
modelled as vehicle routing problems and variants [28-30]. Dynamic vehicle routing
problems [31,32] are an interesting field which allows for the inclusion of stochastic de-
mands [33] and situations where the customer’s requests are revealed dynamically [34].
These elements can also be observed in truck-dispatching activities in mining complexes,
given that different processors have uncertain performances and that production targets
may change, given the characteristics of the feeding materials. One particularity of the
truck-dispatching model herein is that the trips performed between shovels and desti-
nations usually have short lengths and are repeated multiple times. Another important
aspect is that uncertainty arises from the geological properties of the transported materials
and the performance of different equipment. Over the last two decades, there is an effort
to develop frameworks accommodating uncertainties in relevant parameters within the
mining complex operations to support more informed fleet management decisions. Not ac-
counting for the complexity and uncertainties inherent to operational aspects misrepresent
queue times, cycling times and other elements, which inevitably translates to deviation
from production targets [6,35]. Ta et al. [9] allocate the shovels by a goal programming
approach, including uncertainties in truckload and cycle times. Few other approaches
optimize fleet management and production scheduling in mining complexes under both
geological and equipment uncertainty [22,36,37].

A common strategy to model the stochastic interactions between equipment and pro-
cessors in an operating mining environment is through the use of discrete event simulation
(DES) approaches [35,38-43]. The DES allows for replacing an extensive mathematical de-
scription or rule concerning stochastic events by introducing randomness and probabilistic
parameters related to a sequence of activities. The environment is characterized numeri-
cally by a set of observable variables of interest, such that each event modifies the state of
the environment [44]. This simulation strategy can be combined with ideas from optimiza-
tion approaches. Jaoua et al. [45] describe a detailed truck-dispatching control simulation,
emulating real-time decisions, coupled with a simulated annealing-based optimization that
minimizes the difference between tonnage delivered and associated targets. Torkamani
and Askari-Nasab [35] propose a mixed integer programming model to allocate shovels
to mining facies and establish the number of required truck trips. The solution’s perfor-
mance is assessed by a DES model that includes stochastic parameters such as truck speed,
loading and dumping times, and equipment failure behavior. Chaowasakoo et al. [46]
study the impact of the match factor to determine the overall efficiency of truck-shovel
operations, combining a DES and selected heuristics maximizing production. Afrapoli
et al. [47] propose a mixed integer goal programming to reduce shovel and truck idle times
and deviations from production targets. A simulator of the mining operations triggers the
model to be reoptimized every time a truck requires a new allocation. Afrapoli et al. [11]
combine a DES with a stochastic integer programming framework to minimize equipment
waiting times.

It is challenging to formulate all the dynamic and uncertain nature of the truck-shovel
operation into a mathematical formulation. The daily operations in a mining complex
are highly uncertain; for example, equipment failure, lack of staff or weather conditions
can cause deviations in production targets and cause modifications in the dispatching
policy. These events change the performance of the mining complex; thus, the related
mathematical programming model needs to be reoptimized. The use of DES of the mining
complex facilitates the modelling of such events. Note that some of the above mentioned
approaches simulate the mining operations to assess the dispatching performance or
improve it, using heuristic approaches. This strategy can generate good solutions, but the
models do not learn from previous configurations of the mining complex.
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Unlike the in the mentioned heuristic approaches, RL-based methods can take ad-
vantage of a mining complex simulator to define agents (decision-makers) that interact
with this environment based on actions and rewards. The repetition of such interaction
provides these agents with high learning abilities, which enables fast responses when a new
assignment is required. Recent approaches have achieved high-level performances over
multiple environments that require complex and dynamic tasks [48-55]. They have also
been applied to some short-term mine planning aspects showing interesting results [56-58].

This paper presents a truck-dispatching policy based on deep Q-learning, one of
the most popular RL approaches, in order to improve daily production and overall fleet
performance, based on the work in Hasselt et al. [50]. A DES is used to model daily
operational aspects, such as loading, hauling and dumping activities, generating samples,
to improve the proposed truck dispatching policy. A case study applies the method to
a copper—gold mining complex, which considers equipment uncertainty, modelled from
historical data, and orebody simulations [59-63] that assess the uncertainty and variability
related to metal content within the resource model. Conclusion and future work follow.

2. Method

The proposed method adapts the deep double Q-learning neural network (DDQN)
method [50] for dispatching trucks in a mining environment. The RL agents continually take
actions over the environment and receive rewards associated with their performances [15].
Herein, each mining truck is considered an agent; therefore, these terms are used inter-
changeably throughout this paper. The DES, described in Section 2.1, receives the decisions
made by the agents, simulates the related material flow and a reward value evaluating
each action. Section 2.2 defines the reward function and how the agents interact with
the RL environment; where the observed states and rewards compose the samples used
to train the DDQN. Subsequently, Section 2.3 presents the training algorithm based on
Hasselt et al. [50], updating the agent’s parameters (neural network weights). Figure 1
illustrates the workflow showing the interaction between the DES and the DDQN policy.

Discrete event
simulator (DES)

Update the weights of the
DDQN and take actions
based on the updated

policy

Evaluate
Reward

Figure 1. Workflow of the interaction between the DES and the DDQN method.

Provide sample
experience to
DDQN

2.1. Discrete Event Simulator

The discrete event simulator presented in this work assumes a predefined sequence
of extraction, the destination policy of each mining block and the shovel allocation. It
also presumes that the shortest paths between shovels and destinations have been defined.



Minerals 2021, 11, 587

40f17

Figure 2 illustrates this relationship where the black arrow is the predefined destination
path for the block being extracted by the shovel. After the truck delivers the material to the
dumping point (waste dump, processing plant or leaching pad, for example), a dispatching
policy must define the next shovel assignment. The red arrow illustrates the path options
for dispatching.

Shovel locations Dumping-point
locations

Figure 2. Representation of the possible paths a truck can follow: the pre-defined destination of each
block (black arrow); the possible next dumping point (red arrows).

To simulate the operational interactions between shovels, trucks and dumping loca-
tions present in the mining complex, the DES considers the following major events:

Shovel Loading Event: The shovel loads the truck with an adequate number of loads.
The total time required for this operation is stochastic, and once the truck is loaded, it
leaves the shovel as the destination, triggering the “Truck Moving Event.” If the shovel
must move to a new extraction point, it incurs a delay, representing the time taken to
reposition the equipment. After the truck leaves the loading point, this event can trigger
itself if there is another truck waiting in the queue.

Truck Moving Event: This event represents the truck going from a shovel to a dumping
location, or vice versa. Each travelling time is sampled from a distribution approximated
from historical data. Travelling empty or loaded impacts on the truck speed, meaning
that time values are sampled from different distributions in these situations. When the
truck arrives at the loading point and the shovel is available, this event triggers a “Shovel
Loading Event”; otherwise, it joins the queue of trucks. If the truck arrives at the dumping
location, the event performs similarly; if the destination is empty, this event triggers a
“Truck Dumping Event,” otherwise, the truck joins the queue of trucks.

Truck Dumping Event: This event represents the truck delivering the material to its
destination, to a waste dump or a processing plant, for example. The time to dump is
stochastic, and after the event is resolved, a “Truck Moving Event” is triggered to send the
truck back to be loaded. Here, a new decision can be made, sending the truck to a different
shovel. Similar to the “Shovel Loading Event,” once this event is finished, it can trigger
itself if another truck is in the queue waiting for dumping.

Truck Breaking Event: Represents a truck stopping its activities due to maintenance
or small failures. In this event, a truck is removed from the DES regardless of its cur-
rent assignment. No action can be performed until it is fixed and can be returned to
the operation.
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Shovel Breaking Event: Represents the shovel becoming inaccessible for a certain
period due to small failures or maintenance. No material is extracted during this period,
and no trucks are sent to this location, being re-routed until the equipment is ready to be
operational again.

Figure 3a shows a diagram illustrating a possible sequence of events that can be
triggered. In the figure, the solid lines represent the events triggered immediately after the
end of a particular event. The dashed lines are related to events that can be triggered if
trucks are waiting in the queue. To ensure the sequence respects a chronological ordering, a
priority queue is maintained, where each event is ranked by its starting time, as illustrated
in Figure 3b.

(a) Sequence of events

S
Shovel 4
/1 Loading \
// PR
Shovel ’ Truck 4
Loading 71 Dumping \
II
1
Truck Moving Truc!<
Dumping

Truck Moving ——>

(b) Priority queue

TO, Shovel Loading
T1, Truck Moving
T2, Truck Dumping
T3, Truck Moving
T4, Shovel Loading
()

Figure 3. Discrete event simulation represented in terms of: (a) an initial event and possible next
events that can be triggered; (b) a priority queue that ranks each event by its starting time.

The DES starts with all the trucks being positioned at their respective shovel. This
configuration triggers a “Shovel Loading Event,” and the DES simulates the subsequent
events and how much material flows from the extraction point to their destinations by
the trucks. Once the truck dumps, a new decision is taken according to the DDQN policy.
The DES proceeds by simulating the subsequent operations triggered by this assignment.
This is repeated until the predefined time horizon, which represents Ny,s of simulated
activities, is reached by the DES. All events that occur between the beginning and the end
of the DES constitute an episode. Subsequent episodes start by re-positioning the trucks at
their initial shovel allocation.

2.2. Agent—Environment Interaction
2.2.1. Definitions

The framework considers Ny, s trucks interacting with the DES. At every time step
t € T, after dumping the material into the adequate location, a new assignment for truck
i € Npyycks is requested. The truck-agent i observes the current state Si € S, where Si
represents the perception of truck i on how the mining complex is performing at step t and
takes an action Al € A, defining the next shovel to which the truck will be linked. The state
Siis a vector encoding all attributes relevant to characterize the current status of the mining
complex. Figure 4 illustrates these attributes describing the state space, such as current
queue sizes, current GPS location of trucks and shovels, and processing plant requirements.
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This state information is encoded in a vector and inputted into the DDQN neural network,
which outputs action-values, one for each shovel, representing the probability that the
truck be dispatched to a shovel-dumping point path. A more detailed characterization of
the state Si is given in Appendix A.

Crusher/Plant
performance and
requirements
Past Decisions

QK
A

o~ @— Shoveln

Queue sizes > W) (S, ap, w)

Availability AN

Down times \@— Shovel 1
Targets -;--\j.-;g:'-". ;

YYYY
1YY

Figure 4. Illustration of the DDQN agent, which receives as input the state of the environment as input and outputs the

desirability probability of choosing an action.

2.2.2. Reward Function

Once the agent outputs the action A}, the DES emulates how the mining complex
environment evolves by simulating, for example, new cycle times, the formation of queues,
taking into consideration all other trucks in operation. The environment, then, replies to
this agent’s decision with a reward function, represented by Equation (1):

R} = perci — pqi 1)

where perci is the reward associated with delivering material to the mill and accomplishing
a percentage of the destination’s requirement (e.g., mill’s daily target in tons/day). pq! is
the penalty associated with spending time in queues at both shovels and destinations. This
term guides solutions with smaller queue formation while ensuring higher productivity.
In this multi-agent setting, each truck receives a reward R;, which is the sum of each
truck R, as shown in Equation (2), to ensure that all agents aim to maximize the same

reward function.
N trucks

Ri= Y R )
i
During each episode, the agent performs Niteps actions, the discounted sum of rewards
is the called return presented by Equation (3):

Nsteps

Gt = Rep1+ 7Rey2 + P Rpgs + ..+ N IRy = Y /IR (©)
k=t+1

where 7 is a discounting factor parameter, which defines how much actions taken far in
the future impact the objective function [15]. Equation (4) defines the objective, which is to
obtain high-level control by training the agent to take improved actions so that the trucks
can fulfil the production planning targets and minimize queue formation.

maxE [Gt‘s =S, A= Aﬂ @)
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The environment is characterized by uncertainties related to loading, moving, dump-
ing times of the equipment, breakdowns of both trucks and shovels. This makes it very dif-
ficult to define all possible transition probabilities between states (p(S, ;|S = Si, A = A}))
to obtain the expected value defined in Equation (4). Therefore, these transition probabili-
ties are replaced by the Monte Carlo approach used in the form of the DES.

The framework allows for future actions to be rapidly taken since providing the
input vector S; to the neural network and outputting the corresponding action is a fast
operation. This means that the speed at which the decisions can be made depends more
on how quickly the attributes related to the state of the mining complex can be collected,
which has been recently substantially improved with the new sensors installed throughout
the operation.

2.3. Deep Double Q-Learning (DDQN)

The approach used in the current study is the double deep Q-learning (DDQN)
approach based on the work of Hasselt et al. [50]. Q-function Q; (St, Al wt) is the action-
value function, shown in Equation (5), which outputs values representing the likelihood
of truck i choosing action Al, given the encoded state Si and the set of neural-network
weights w!, illustrated by Flgure 4.

Q:(Si, Al w}) = E[Gi|s = S}, 4 = A]] 5)

Denote Q7 (s};, ai, wi) to be the theoretical optimal action-value function. Equation (6)
presents the optimal policy 77* (S}) for the state S}, which is obtained by using the action-
function greedily:

Tt (Si) = argmafo( id, wi> (6)
aeA

Note that, using Equation (6), the approach directly maximizes the reward function
described in Equation (4). This is accomplished by updating the Q; (Si, Ay wi) function to
approximate the optimal action-value function (Q; (S}, A}, w;) — Qf (S}, Aj, w')).

By letting agent i interact with the environment, given the state Sj, the agent chooses
A}, following a current dispatching policy 71;(S}) = argmaxQ; (S, ', w}), the environ-
acA

ment then returns the reward R; and a next state S The sample experience e;; =

t+1°
(S;, ALR, St+l) is stored in a memory buffer, DK = {el, e, ..., e%}, which is increased as
the agent interacts with the environment for additional episodes. A maximum size limits
this buffer, and once it is reached, the new sample e;'( replaces the oldest one. This is a known
strategy called experience replay, which helps stabilize the learning process [48,50,64].

In the beginning, Q;(Si, A, w}) is randomly initialized, then a memory tuple e}
is repeatedly uniformly sampled from the memory buffer Di, and the related e}; =
(Si, Af;, R, Si +1) values are used to estimate the expected future return G, as shown
in Equation (7):

Ry, if episode terminates at t + 1

G = R; +vQ; (Si, argrr;iax Qi(SﬁH,a’, wl), wi>, otherwise @)
a'e

Additionally, gradient descent is performed on (Gt — Q; (St, Al wt) )2 with respect
to the parameter weights wi. Note that a different Q-function, Q;(-), is used to predict
the future reward; this is simply the Q;(-) with the old weight parameters. Such an
approach is also used to stabilize the agent’s learning, as noisy environments can result in
a slow learning process [50]. After Ny steps, the weights w! are copied to @', as follows:

Qi(-) = Qi)
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During training, the agent i follows the greedy policy 7;(S}) meaning that it acts
greedily with respect to its current knowledge. If gradient descent is performed with
samples coming solely from 7;(S!), the method inevitably would reach a local maximum
very soon. Thus, to avoid being trapped in a local maximum, in €% of the time, the agent
takes random actions exploring the solution space, sampling it from a uniform distribution
Al ~ U(A). In (100 — €)% of the time, the agent follows the current policy Al ~ 7;(S!).
To take advantage of long-term gains, after every Nipeps_reduce Steps this value is reduced by
a factor reduce_factor € [0,1]. In summary, the algorithm is presented as follows:

Algorithm 1 Proposed learning algorithm.

Initialize the action-functions. Q;(-) and Q;(-) by assigning initial weights to w} and @'.
Set nlcounter = 0 and n2counter = 0.
Initialize the DES, with the trucks at their initial locations (e.g., queueing them at the shovel).
Repeat for each episode:
Given the current truck-shovel allocation, the DES simulates the supply material
being transferred from mining facies to the processors or waste dump by the trucks.
Once the truck i dumps the material, a new allocation must be provided.
At this point, the agent collects the information about the state S..
Sample 1 ~ U(0,100)
If u<e%
The truck-agent i acts randomly A} ~ U(A)
Else:
The truck-agent i acts greedily A ~ 7 (S;)

Taking action Al observe R; and a new state Si L1

Store the tuple ef{ = (Sf;, Ai, Ry, Si+1> in the memory buffer D};
Sample a batch of experiences ef{ = (Si, Ai, R;, SiH), of size batch_size, from D%:

For each transition sampled, calculate the respective G from Equation (7).

. N =2
Perform gradient descent on (Q’I <st+1, a, wll) - Gt) according to Equation (8):

wll,next — wll,old -« (Qll (St+1/ a, wll> - Gt) vwi Qll <5t+1r a’, wll> ®
leounter < Mlcounter + 1.
2counter < N2counter + 1.
If nlcounter > NUpdt:
W wh.
1 counter < 0.
If n2counter > Nitep_reduce:
€ < e xreduce_factor.
n2counter < 0.

3. Case Study at a Copper—Gold Mining Complex
3.1. Description and Implementation Aspects

The proposed framework is implemented at a copper-gold mining complex, summa-
rized in Figure 5. The mining complex comprises two open-pits, whose supply material is
extracted by four shovels and transported by twelve trucks to the appropriate destinations:
waste dump, mill or leach pad. Table 1 presents information regarding the mining equip-
ment and processors. The shovels are placed at the mining facies following pre-defined
extraction sequences, where the destination of each block was also pre-established before-
hand. The mining complex shares the truck fleet between pits A and B. The waste dump
receives waste material from both mines, whereas the leach pad material only processes
supply material from pit B due to mineralogical characteristics. The truck going to the leach
pad dumps the material into a crusher, then transported it to the leach pad. Regarding the
milling material, each pit is associated with a crusher, and the trucks haul the high-grade
material extracted from a pit and deliver it to the corresponding crusher. Next, a conveyor
belt transfers this material to the mill combining the material from the two sources. Both
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the mill and the leach pad are responsible for producing copper products and gold ounces
to be sold.

Figure 5. Diagram of the mining complex.

Copper / Gold

Leach Pad

Table 1. Mining complex equipment and processors.

Equipment Description

6 of payload capacity of 200 tons

12T f;lctl;fal 3 of payload capacity of 150 tons
3 of payload capacity of 250 tons
Shovel 2 of bucket payload of 80 tons
4in total 1 of bucket payload of 60 tons
1 of bucket payload of 85 tons
Mill Capacity 80,000 ton/day, with 2 crushers.
Leach Pad Capacity 20,000 ton/day, with one crusher.
Waste Dump 1 Waste Dump with no limitation on capacity.

The discrete event simulation, described in Section 2.1, emulates the loading, hauling
and dumping operations in the mining complex. Each event is governed by uncertainties
that impact the truck cycling times. Table 2 presents distributions used for the related
uncertainty characterization. For simplicity, these stochastic distributions are approximated
from historical data; however, a more interesting approach would have been to use the
distribution directly from historical data. When the truck dumps material into a destination,
a new dispatching decision must be taken by the DDQN dispatching policy. This generates
samples that are used to train the DDQN dispatching policy. During the training phase,
each episode lasts the equivalent of 3 days of continuous production, where the truck-agent
interacts with the discrete event mine simulator environment, taking actions and collecting
rewards. In total, the computational time needed for training, for the present case study;, is
around 4 h. For the comparison (testing) phase, the method was exposed to five consecutive
days of production. This acts as a validation step, ensuring that the agents observe the
mining complex’s configurations which were unseen during training. The results presented
show the five days of production, and the performance obtained illustrates that the method
does not overfit regarding the three days of operation but maintain a consistent strategy
for the additional days.

Table 2. Definition of stochastic variables considered in the mining complex.

Stochastic Variable Probability Distribution
Loaded truck speed (km/h) Normal (17, 4)
Empty truck speed (km/h) Normal (35, 6)
Dumping + maneuver time (min) Normal (1, 0.15)
Shovel bucketing load time (min) Normal (1.1, 0.2)
Truck mean time between failures (h) Poisson (36)
Truck mean time to repair (h) Poisson (5)
Shovel mean time between failures (h) Poisson (42)

Shovel mean time to repair (h) Poisson (4)
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Note that although the DDQN policy provides dispatching decisions considering a
different context from the one it was trained, the new situations cannot be totally different.
It is assumed that in new situations, the DDQN experiences are sampled from the same
distribution observed during training. In the case where the sequence of extraction changes
considerably and new mining areas as well as other destinations are prioritized, the model
needs to be retrained.

Two baselines are presented to compare the performance of the proposed approach.
The first one, referred to as fixed policy, is a strategy that continually dispatches the truck
to the same shovel path throughout the episode. The performance comparison between
the DDQN and fixed policy is denoted Case 1. The second approach, referred to as greedy
policy, sends trucks to needy shovels with the shortest waiting times to decrease idle shovel
time, denoted Case 2. Both cases start with the same initial placement of the trucks.

The environment is stochastic, in the sense that testing the same policy for multiple
episodes generates different results. Therefore, for the results presented here, episodes
of 5 days of continuous production are repeated 10 times for each dispatching policy. To
assess uncertainty outcomes beyond the ones arising from operational aspects, geological
uncertainty is also included in the assessment by considering 10 orebody simulations
(Boucher and Dimitrakopoulos; 2009) characterizing the spatial uncertainty and variability
of copper and gold grades in the mineral deposit. The graphs display results in P10, P50
and P90 percentile, corresponding to the probability of 10, 50 and 90%, respectively, of
being below the value presented.

3.2. Results and Comparisons

Figure 6 presents the daily throughput obtained by running the DES over the five days
of production, which is achieved by accumulating all material processed by the mill within
each day. Note that here the P10, P50 and P90 are only due the equipment uncertainty.
Overall, the proposed model delivers more material to the mill when compared to both
cases. The DDQN method adapts the dispatching to move trucks around, relocating them
to the shovels that are more in need, which constantly results in higher throughput.

(a) Case 1 (b) Case 2
Mill - tonnages processed Mill - tonnages processed
w | T n —-':_ - I
Q B Q - g
o (@]
© ©
c 4 |
g g P10 - DDON
—— P10 -DDQN _— -
= = P50 - DDQN = == P50 - DDQN
—— P90 - DDQN — P90 - DDON "
== P10 - fixed_policy -- P10 - greedy S
= = P50 - fixed_policy = = P50 - greedy ™
== P90 - fixed_policy -= P90 - greedy
—— target — ftarget
0 1 2 3 4 5 0 1 2 3 4 5
Day Day

Figure 6. Daily throughput at the mill compared the DDQN policy (black line) and the respective baselines (blue line):

(a) fixed policy and (b) greedy policy.

The throughput in day five drops compared to previous days, mostly due to a smaller
availability of trucks as the DES considers failures in the trucks; Figure 7 presents the
average number of trucks available per day. During the initial three days, the availability
of trucks hovers between 10 and 12 trucks, but this rate drops in the last 2 days, which
decreases the production. However, the trained policy can still provide a higher feed rate
at the mill, even in this adversity. The availability of trucks on days 4 and 5 is smaller than
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the period for which the DDQN based method was trained, which shows an adapting
capability of the dispatching approach.

Availability of Trucks

12.0 4

11.5

11.0

10.5

10.0

---- P10
9.54|— pso
---- P30

Number of trucks available

Figure 7. Availability of trucks during the five days of operation.

The framework is also efficient in avoiding queue formation. Figure 8 presents the
average queue sizes at the mill and the sulphide leach. The queue at different locations is
recorded hourly and averaged over each day. The plot shows that, for most of the days,
the proposed approach generates smaller queues. Combined with the higher throughput
obtained, this reduction in queue sizes demonstrates better fleet management. For example,
during the initial three days, the DDQN approach improves the dispatching strategy
by forming smaller queues at the mill. At the same time, the amount of material being
delivered is continuously higher. On the 4th day, the proposed approach generates a larger
queue size at the mill, which is compensated by having considerably higher throughput at
this location.
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Figure 8. Queue sizes of trucks waiting at the mill (top) and Sulphide Leach (bottom) for the Deep

DON policy (black line) and the respective baseline (blue line): (a) fixed policy and (b) greedy policy.
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Figure 9 displays the cumulative total copper recovered at the mining complex over
the five days. Interestingly, during the first three days of DES simulation, corresponding to
the training period of the DDQN approach, the total recovered copper profile between the
proposed method and the baselines is similar. However, this difference is more pronounced
over the last two days, which represents the situation that the trained method has not seen.
This results in 16% more copper recovered than the fixed policy and 12% more than the
greedy strategy. This difference in results is even larger when the total gold recovered is
compared. The DDQN method generates a 20 and 23% higher gold profile in Case 1 and
Case 2, respectively, Figure 10.
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Figure 9. Cumulative copper recovered for the optimized DDQN policy (black line) and the respective baseline (blue line):
(a) Case 1 and (b) Case 2.
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Figure 10. Cumulative gold recovered for the DDQN policy (black line) and the respective baseline (blue line): (a) fixed
policy and (b) greedy policy.

4. Conclusions

This paper presents a new multi-agent truck-dispatching framework based on a
reinforcement learning framework. The approach involves the interaction between a DES,
simulating the operational events in a mining complex, and a truck-dispatching policy
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based on the DDQN method. Given a pre-defined schedule in terms of the sequence of
extraction and destination policies for the mining blocks, the method improves the real-
time truck-dispatching performance. The DES mimics daily operations, including loading,
transportation and dumping, and equipment failures. A truck delivers the material to
a processor or waste dump, and the truck-dispatcher provides it with a different shovel
path. At this point, the truck receives information about the mining complex, such as
other truck locations via GPS tracking, the amount of material feeding the processing plant
and queue sizes at different locations. This state information is encoded into a vector,
characterizing the state of the mining complex. This vector is inputted into the DDQN
neural network, which outputs action values, describing the likelihood to send the truck to
each shovel. Each dispatching decision yields a reward, which is received by the agent, as
a performance evaluation. Initially, the truck-agent acts randomly; as the agent experiences
many situations during training, the dispatching policy is improved. Thus, when new
dispatching decisions are requested, an assignment is quickly obtained by the output of
the DDON agent. It differs from previous methods that solve a different optimization
repeatedly during dispatching. Instead, the only requirement is to collect information
regarding the state of the mining complex. With the digitalization of the mines, obtaining
the required information can be done quickly.

The method is applied to a copper-gold mining complex composed of two pits,
three crushers, one waste dump, one mill and one leach-pad processing stream. The
fleet is composed of four shovels, and twelve trucks that can travel between the two pits.
The DDQN-based method is trained for the equivalent of three days, while the results
are presented for five days of production. Two dispatching baseline policies are used for
comparison to assess the capabilities of the proposed method: fixed truck-shovel allocations
and a greedy approach that dispatches trucks to needy shovels with the smallest queue
sizes. The results show that the DDQN-based method provides the mill processing stream
with higher throughput while generating shorter queues at different destinations, which
shows a better fleet utilization. Over the five days of production, the proposed policy
produces 12 to 16% more copper and 20 to 23% more gold than the baseline policies.
Overall, the reinforcement learning approach has shown to be effective in training truck-
dispatching agents, improving real-time decision-making. However, future work needs
explore the development of new approaches that address the impact and adaptation
of truck-dispatching decisions to changes and re-optimization of short-term extraction
sequences given to the acquisition of new information in real-time and uncertainty in the
properties of the materials mind.
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Appendix A.
Appendix A.1. State Definition

The definition of the state of the mining complex vector Si encodes all attributes
relevant to characterize the current status of the mining complex. Table A1 presents where
the attributes are taken from and how it is represented in a vector format. Note that the
encoding used here simply transforms the continuous attributes into values between 0
and 1, by a division of a large number. For discrete ones, a one-hot-encoding approach
is used, where the number of categories defines the size of the vector, and a value of 1 is
placed in the location corresponding to the actual category. This strategy attempts to avoid
generating large gradients during gradient descent and facilitates the learning process.
This idea can be further generalized, and other attributes judged relevant by the user can
also be included.

Table Al. Attributes defining the current state of the mining complex.

Attribute in Consideration Representation

Shovel related attributes

Destination policy of the block being

currently extracted 1-hot-encoded vector (3-dimensional)

Destination policy of next 2 blocks 1-hot-encoded (6 dimensional in total)

Shovel capacity 1 value divided by the largest capacity

Variable indicating if the shovel is currently

. . 1 value (0 or 1)
1in maintenance

Current distance to destination 1 value divided by a large number
Number of trucks associated 1 value divided by a large number
Approximated queue sizes 1 value divided by a large number
Approximated waiting times 1 value divided by a large
Number of attributes per shovel 15
% target processed 1 value
Amount of material received at crushers 2 values divided by a large number
Destination related attributes Distance to each shovel 4 values dived by a large number
Approximated queue sizes 1 value divided by a large number
Approximated waiting times 1 value divided by a large number
Number of attributes per destination 9
Truck capacity 1 value divided by the largest capacity

Truck related attributes

Current number of trucks currently in operation. 1 value divided by the total number of trucks

The last shovel visited 1-hot-encoded (4 values)

Number of attributes of each truck

Total of attributes 102

Appendix A.2. Neural Network Parameters

Table A2. Reinforcement learning parameters.

Input layer = 102 nodes with ReLU activation function;

Neural Network Hidden layer 306 nodes with ReLU activation function;
Output layer: 4 nodes without activation function.
Gradient descent Adam optimization, with learning rate = 2 x 10—4.
v = 0.99
DDQN parameters € = 0.25, with reduce_factor = 0.98

10,000 episodes of training.
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