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Abstract Modern approaches for the spatial simulation of categorical variables 
are largely based on multi-point statistical methods, where a training image is used 
to derive complex spatial relationships using relevant patterns. In these approaches, 
simulated realizations are driven by the training image utilized, while the spatial sta-
tistics of the actual sample data are ignored. This paper presents a data-driven, high-
order simulation approach based on the approximation of high-order spatial indica-
tor moments. The high-order spatial statistics are expressed as functions of spatial 
distances that are similar to variogram models for two-point methods, while higher-
order statistics are connected with lower-orders via boundary conditions. Using an 
advanced recursive B-spline approximation algorithm, the high-order statistics are 
reconstructed from the available data and are subsequently used for the construction 
of conditional distributions using Bayes’ rule. Random values are subsequently sim-
ulated for all unsampled grid nodes. The main advantages of the proposed technique 
are its ability to (a) simulate without a training image to reproduce the high-order 
statistics of the data, and (b) adapt the model’s complexity to the information avail-
able in the data. The practical intricacies and effectiveness of the proposed approach 
are demonstrated through applications at two copper deposits.
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1 Introduction

Geostatistical simulations are often required in reservoir modeling, as well as 
in the quantification of geological uncertainty, pollutants in contaminated areas, 
and other spatially dependent geological and environmental phenomena. During 
the past few decades, geostatistical simulations of categorical variables, such as 
geological units with complex spatial geometries of mineral deposits and petro-
leum reservoirs, have largely been modeled within the framework of multiple-
point spatial simulation (MPS) methods that were introduced in the 1990s and 
have been further developed since then (Guardiano and Srivastava 1993; Jour-
nel 1993; Strebelle 2002, 2021; Journel 2003; Zhang et al. 2006; Chugunova and 
Hu 2008; Remy et al. 2009; Mariethoz and Renard 2010; Straubhaar 2011; Stien 
and Kolbjørnsen 2011; Toftaker and Tjelmeland 2013; Strebelle and Cavelius 
2014; Zhang et  al. 2017; Gómez-Hernández and Srivastava 2021, others). The 
MPS framework is based on the use of training images (TI) or analogues of the 
attributes of interest being modeled and contains additional information about the 
complex spatial relations of the attributes to be simulated; however, the TIs are 
not conditioned to the available data and their spatial statistics. To retrieve and 
use the pertinent information from a TI, the similarity between the local neigh-
borhood of an unsampled location to be simulated and the TI is calculated in an 
explicit or implicit form. Based on this similarity measure, the value of a node 
from the TI with the most similar neighborhood is assigned to the unsampled 
location being simulated. Generally, most of the multi-point simulation tech-
niques are a Monte Carlo sampling of values from the TI in some form. No spa-
tial models are used and, importantly, no spatial information is retrieved from the 
available sample data. As a result, simulated realizations of attributes of interest 
reflect the TI and its spatial aspects. In cases where there are relatively large data 
sets, conflict between the available data and the TI statistics is observed, and the 
resulting simulated realizations do not reproduce the spatial statistics of the data 
(Goodfellow et al. 2012; Osterholt and Dimitrakopoulos 2007; Dimitrakopoulos 
et al. 2010; Pyrcz and Deutsch 2014). Several attempts have been made to incor-
porate more information from the available data. Some authors suggest using rep-
licates from the data in addition to TI (Mariethoz and Renard 2010); however, in 
practice, it is difficult to find any replicates for three-point relations when data are 
sparse. Others (Mariethoz and Kelly 2011) apply affine transformations to better 
condition to the data; however, a TI remains the main source of information.

Dimitrakopoulos et al. (2010) and Mustapha and Dimitrakopoulos (2010a, b) 
propose the use of high-order spatial cumulants to capture complex multi-point 
relations during the simulation of non-Gaussian random fields. The proposed 
high-order simulation approach estimates the third- and fourth-order spatial sta-
tistics from data and complements them with higher-order statistics from the TI. 
Further developments in algorithmic performance (Yao et al. 2018, 2020), gener-
alization using splines (Minniakhmetov et  al. 2018), a high-order decorrelation 
method (Minniakhmetov and Dimitrakopoulos 2017a), and efficient block simula-
tions (de Carvalho et  al. 2019), and training-image-free simulations (Yao et  al. 
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2021) have made the approach more practical. These approaches are based on the 
approximation of a conditional distribution using Legendre polynomials, which 
are smooth functions and are incapable of an adequate approximation of the dis-
crete distribution of categorical variables.

The topic of describing complex multi-point relations of categorical variables is 
addressed in Vargas-Guzman (2011) and Vargas-Guzman and Qassab (2006), who 
use high-order indicator statistics to characterize spatially distributed rock units, while 
Minniakhmetov and Dimitrakopoulos (2017b) develop this further by introducing the 
connection between different orders to the related mathematical model for the two-
dimensional case. For example, consider a third-order spatial indicator moment of a 
stationary random field, which is a function of two lags. When one of the lags is equal 
to zero, the third-order indicator moment becomes the second-order indicator moment. 
In addition, instead of exponential functions, the B-spline functions are used to estimate 
high-order spatial indicator moments. It is known that B-splines provide an optimal 
(in terms of accuracy) estimation of equi-continuous functions defined on compacts 
(Evans et  al. 2009; Babenko 1986). Based on the above, a new recursive algorithm 
is proposed for the better approximation of high-order spatial statistics with nested 
boundary conditions of lower-level relations. Then, the conditional distribution for the 
given neighborhood is calculated from high-order indicator moments and the related 
category is simulated. In addition to extending previous developments mentioned 
above, the present study also explores practical aspects of the proposed method through 
applications at two major, real-world copper deposits: Olympic Dam, Australia, and 
Escondida, Chile (the world’s largest copper mine). Furthermore, the paper highlights 
the importance of high-order spatial statistics as the useful tool for the analysis of spa-
tial contact relations between categories. Contrary to indicator variograms (Journel and 
Alabert 1990; Goovaerts 1997) that provide information about pair-wise relationships 
between categories, the third- and fourth-order spatial indicator moments reflect three- 
and four-wise relations between multiple categories in space. It should be noted that, as 
shown in the subsequent sections, the proposed method works without a TI; however, 
additional information from a TI can be incorporated as a secondary condition, ensur-
ing that the high-order spatial indicator moments are driven by the available data.

The paper is organized as follows. First, high-order spatial indicator moments are 
introduced as a function of distances between points for two-point and multi-point 
cases. Then, a mathematical model for recursive approximation of high-order spatial 
indicator moments is presented, followed by the proposed high-order, data-driven, 
categorical simulation method. Subsequently, the proposed simulation algorithm is 
applied in two case studies to simulate the geological units of copper deposits. Dis-
cussion and conclusions follow.

2  High‑Order Spatial Indicator Simulation

Let (Ω,F,P) be a probability space. Consider a stationary ergodic random vector 
� = (Z1, Z2,… , ZN)

T, � ∶ Ω → SN , defined on a regular grid D = {�1, �2,… , �N} , 
� ∈ Rn, n = 2, 3 , where Ω is a space of all possible outcomes, F contains all com-
binations of Ω , SN is a set of states represented by categories S = {s1, s2,… , sK} , 
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and P is the probability measure, or probability. For example, the probability of Z1 
being at a state sk is defined as

Without loss of generality, assume that sk = k, k = 1…K . Let �n = {z� , � = 1… n} 
be a given set of conditioning data, where lowercase z stands for outcomes of ran-
dom variable Z . The focus of high-order simulation techniques is to simulate the 
realization of the random vector � for all nodes of a grid D with a given set of con-
ditioning data �n.

Similarly to Minniakhmetov and Dimitrakopoulos (2017b), the high-order 
categorical simulation method is based on the concept of sequential simulation 
(Journel and Alabert 1990; Journel 1993), where the joint probability distribution 
P(Z1 = k1, Z2 = k2,… , ZN = kN|��) of the random vector � can be decomposed 
into the product of conditional univariate distributions

According to Eq. (2), simulation of categorical variables can be done sequentially by 
visiting a grid node at a time and calculating P(Zi = ki|Z1 = k1,… , Zi−1 = ki−1, ��) . 
However, in practice (Dimitrakopoulos and Luo 2004), instead of considering all 
previously simulated nodes and data {Z1,… , Zi−1, ��} , only those in local neighbor-
hood of Zi are considered, i.e.

where Λi is the set of previously simulated nodes and data within the local neighbor-
hood of Zi.

Similarly to Mustapha and Dimitrakopoulos (2010a, b), the conditional dis-
tribution in Eq.  (3) can be calculated from the joint distribution. Without loss 
of generality, consider conditional distribution P(Z0 = k0|Z1 = k1,… , Zn = kn) ; it 
can then be calculated using Bayes’ rule (Ripley 1987)

where P(Z1 = k1,… ,Zn = kn) can be considered as a normalization coefficient due 
to the relations

It can be shown that the probability is equivalent to spatial indicator moment (Var-
gas-Guzman 2011)

(1)P(Z1 = sk) ≡ P({𝜔 ∈ Ω ∶ �(𝜔) ∈ sk ⊗ SN−1})

(2)

P(Z1 = k1,… , ZN = kN|��) = P(Z2 = k2,… , ZN = kN|Z1 = k1, ��)P(Z1 = k1|��)

=

N∏

i=2

P(Zi = ki|Z1 = k1,… , Zi−1 = ki−1, ��)P(Z1 = k1|��)
.

(3)P(Zi = ki|Z1 = k1,… , Zi−1 = ki−1, ��) ≈ P(Zi = ki|Λi),

(4)
P(Z0 = k0|Z1 = k1,… , Zn = kn) = P(Z0 = k0, Z1 = k1,… , Zn = kn)∕P(Z1 = k1,… , Zn = kn),

(5)P(Z1 = k1,… , Zn = kn) =

K∑

k0=1

P(Z0 = k0, Z1 = k1,… , Zn = kn),
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where E is the expected value operator and Ik(Zi) is an indicator function

From here on, indicator moments are denoted as

Finally, Eqs. (2–5) define simulation algorithm of categorical random vector �.

Algorithm A.1 

1. Define a random path visiting all the unsampled nodes.
2. For each node �i0 in the path:

a. Find the closest data samples �i1 , �i2 ,… �in
 . The categories at these nodes are 

denoted by k1,… kn.
b. For all k0 = 1…K  , calculate the high-order spatial indicator moments 

M
�
(Zi0 , Zi1 ,… , Zin )

c. Calculate the conditional distribution from joint distribution

where coefficient A is the normalization coefficient as in Eq. (4)

d. Draw a random value zi0 from this conditional distribution (10) and assign it 
to the unsampled location �i0.

e. Add zi0 to the set of sample hard data and the previously simulated values.
f. Repeat Steps 2a–e for all the points along the random path defined in Step 1.

The next section presents a new method to calculate high-order spatial indicator 
moments for Eqs. (9–10).

3  High‑Order Spatial Indicator Moments

Similarly to second-order statistics such as variograms, high-order spatial moments 
are calculated by discretizing distances between data samples into lags and find-
ing all pairs, triplets, or multiplets separated by the same lags. To define lags in the 
two-dimensional case, the local neighborhood of each data sample is divided into 

(6)
P(Zi0 = k0, Zi1 = k1,…) = E

[
Ik0 (Zi0 )Ik1 (Zi1 )…

]
, ∀i0, i1 … = 1…N, ∀k0, k1,… = 1…K

(7)Ik(Zi) =

{
1, Zi = k

0, Zi ≠ k0
.

(8)M
�
(Zi0 , Zi1 ,…) = Mk0k1,…

(Zi0 , Zi1 ,…) = E
[
Ik0 (Zi0 )Ik1 (Zi1 )…

]
.

(9)P
(
Zi0 = k0|Zi1 = k1 … , Zin = kn

)
= AM

�
(Zi0 , Zi1 ,… , Zin ),

(10)A = 1∕

K∑

k0=1

M
�
(Zi0 , Zi1 ,… , Zin )
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eight sectors ( oct = 1… 8 ) and concentric circles with radius (r = {r1, r2,… rmax} ) 
increasing by logarithmic law (Fig. 1). The choice of logarithmically increasing lags 
is driven mainly by computational resource limits. For example, to cover extents 
of 400  m (with 200  m typical continuity range for the deposits under considera-
tion), the constant lag division with resolution at first lags of about 20 m requires 20 
lags, which correspond to  204 = 160,000 bins in a fourth-order map for each possi-
ble combination of categories in four points, whereas logarithmically increasing lags 
{20, 30, 40, 70, 160, 400} require  64 = 1296 bins, i.e. 123 times fewer calculations. 
In Fig. 1, data samples are denoted by x0 (central point), x1 , x2 , and x3 . Data sample 
x1 is located in octant o = 7 and lag h = r3 , x2 is in octant o = 1 and lag h = r2 , and x3 
is in octant o = 5 and lag h = r2 . Any point located in the central circle belongs to all 
octant and lag 0. Thus, high-order moments can be expressed as functions of octant 
index and lags, e.g. Mk0k1k2

(Z0, Z1, Z2) ≈ Mk0k1k2
(o1 = 7, o2 = 1;h1 = r3, h2 = r2) , 

where Z0, Z1, Z2 are random variables at locations x0, x1, x2 . From here on, calculated 
indicator moments are denoted as

and are calculated using sampling average

where ∧ denotes statistics calculated from data samples, i.e. sampling statistics, and 
N
�,� is the number of all data samples zj

i0
… z

j

in
, j = 1…N

�,� falling in the octants 

� = {o1,… , on} and lags � = {h1,… , hn}.
The data samples in Fig.  1 contribute to experimental high-order spatial sta-

tistics from order 2 to 4: second-order indicator moments M̂k0k1
(o = 7; h = r3) , 

M̂k0k2
(o = 1; h = r2) , M̂k0k3

(o = 5; h = r2) , third-order indicator moments 
M̂k0k1k2

(o1 = 7, o2 = 1; h1 = r3, h2 = r2) , M̂k0k1k3
(o1 = 7, o2 = 5; h1 = r3, h2 = r2) , 

M̂k0k2k3
(o1 = 7, o2 = 5; h1 = r3, h2 = r2) , and fourth-order indicator moment 

M̂k0k1k2k3
(o1 = 7, o2 = 1, o3 = 5; h1 = r3, h2 = r2, h3 = r2) . It should be noted that 

during simulation Step 2a, only one data sample per octant is used as conditional 
data to avoid calculation of high-order moments with repetitive random variables, 

(11)M
�
(�; �) = Mk0k1,…,kn

(o1,… on; h1,… hn) = M
�
(Zi0 , Zi1 ,…Zin ),

(12)M̂
�
(�; �) =

1

N
�,�

N
�,�∑

j=1

Ik0 (z
j

i0
)… Ikn (z

j

in
),

Fig. 1  Octant division of local 
neighborhood with logarithmi-
cally increasing lags. x0 (central 
point), x1 , x2 , and x3 are data 
samples
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e.g. M̂k0k1k1
(Z0, Z1, Z1) , M̂k0k1k3k3

(Z0, Z1, Z3, Z3) . This is quite similar to the octant 
search approach for second-order statistics methods (Remy et al. 2009). If several 
data samples fall in the same octant, the choice is made randomly.

In the three-dimensional case, instead of octants, the quadraginta octant divi-
sion (Biswas and Bhowmick 2017) with 48 sectors (6 sectors per quadrant) is used 
(Fig. 2).

Following the logic of fitting theoretical variograms to variogram models (Jour-
nel and Huijbregts 1978), the sampling statistics (12) are not used directly to calcu-
late joint distributions, but they are used to model high-order indicator moments.

The quadraginta octant division is the critical part of step 2b, which entails the 
calculation of high-order spatial indicator moment M

�
(Zi0 , Zi1 ,… , Zin ) of Algo-

rithm A1 above. For the sake of simplicity, consider three possible categories 
k ∈ {0, 1, 2} and three points: central point random value Z0 to be simulated at 
location �0 and two neighborhood data samples z1 and z2 in arbitrary directions �1 
and �2 . First, the octants (o1, o2) and lag distances (h1, h2) are calculated from lags 
�1 = �1 − �0 and �2 = �2 − �0 centered at point�0 . Next, the two-dimensional surfaces 
M̂k0=0,k1,k2

(o1, o2; u, v) , M̂k0=1,k1,k2
(o1, o2; u, v) , M̂k0=2,k1,k2

(o1, o2; u, v) are approximated 
using all available data and the nested algorithm presented in Sect.  3.1. Note that 
(k1, k2) and (o1, o2) are fixed and known from neighborhood data at �1 and �2 ; (u, v) are 
distances along directions (o1, o2)—the only variable part of M̂k0=0,k1,k2

(o1, o2; u, v).
It should be noted that using quadraginta octant search in Algorithm A1 is quite 

different from the search in the classical MPS methods, such as SNESIM (Strebelle 
and Cavelius 2014). Firstly, MPS methods reduce the number of neighborhood data 
when no exact replicates are found for a particular spatial configuration, whereas 
octant search provides all possible replicates at different lags with the fixed angles; 
for example, for the third-order moments (3-point statistics) for the fixed octants 
(o1, o2) defined by neighborhood data, all replicates at different lag distances (h1, h2) 
are found and used in the simulation of a value in a node. Secondly, octant search 

Fig. 2  Quadraginta octant 
division for the tree-dimensional 
case (Biswas and Bhowmick 
2017)
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does not look for exact spatial replicates, but replicates within tolerances of lags and 
angles, which dramatically increases the number of replicates used in the simulation 
process. Lastly, there is no restriction on the “regularity” of the data sample loca-
tions or TI (if used), as the octant search works on points rather than on a grid.

3.1  Approximating High‑Order Indicator Moments

Data available in some applications can be dense in space and give the impression 
that the high-order spatial statistics in Eq. (10) can be directly calculated from sam-
ples. However, the dimension of space in high-order spatial statistics grows expo-
nentially as the order increases, such that even dense drilling is insufficient for the 
direct calculation of high-order statistics from the data. For example, in the fourth-
order indicator moments, there are 17,296 possible combinations of directions (all 
possible three neighbor directions from 48 quadraginta octant division) and  24 
possible combinations of indicators, for the case with two categories only, which 
results in  24 × 17,296 = 138,368 fourth-order spatial indicator moments. Figure 3 and 
Table 1 show the histogram and percentiles, respectively, of the number of replicates 
for fourth- and fifth-order spatial indicator moments found in the Olympic Dam data 
set described in Sect. 4.1. Replicates have been calculated using quadraginta octant 
division and 20 m lag tolerance. Overall, 80% of all possible spatial configurations 
from the drill-hole data had fewer than eight samples to calculate the fourth-order 

Fig. 3  Histogram of number of replicates for a fourth- and b fifth-order spatial indicator moments found 
in the Olympic Dam data set

Table 1  Percentiles of number 
of replicates for (a) fourth-
order and (b) fifth-order spatial 
indicator moments found in the 
Olympic Dam data set

P50 P60 P70 P80 P90

Number of repli-
cates in fourth-
order moments

2 3 4 8 18

Number of repli-
cates in fifth-order 
moments

2 2 3 6 12
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indicator moment and fewer than six samples for the fifth-order indicator moments. 
Such a small number of replicates is not sufficient to provide a robust calculation of 
high-order moments for Eq. (10) of Algorithm A.1.

To increase the amount of information and, consequently, the quality of approxi-
mation of high-order moments, Minniakhmetov and Dimitrakopoulos (2017a, b) 
show that high-order indicator moments are bound by low-order moments

where �∖hp denotes all the lags � excluding the lag hp , and �∖kp denotes all the cat-
egories � excluding the category kp . If the directions are close to orthogonal, then 
additional boundary conditions are valid

where Mk is first-order statistics, i.e. proportion of category k in the data. Using the 
boundary conditions Eqs. (13–14) and sampling statistics (12), high-order indicator 
moments are approximated by

where M0

�
(�, �) is a trend defined just by boundary conditions, and �M

�
(�; �) is the 

B-spline regression of the mismatch between sampling statistics and trend M0

�
(�; �).

The trend M0

�
(�; �) connects lower-order moments with high-order moment by 

recursive formula

where a = c∕rmax , rmax is the radius that defines the local neighborhood, and c is the 
user-defined parameter that controls the influence of boundary conditions, i.e. small 
values of c force the approximation to use lower-order statistics close to boundaries 
( hp = 0, rmax ) and sampling statistics in the area far from boundaries, whereas large 
values of c increase the influence of low-order statistics on high-order statistics. For 
data-rich environments, such as mining of mineral deposits, the use of smaller val-
ues of c is suggested, and for sparse data, large values.

As the term M0

�
(�; �) incorporates the connection between low and high orders, 

the �M
�
(�; �) is only responsible for approximation of sampling statistics with zero 

boundary conditions.
The approximation of the multidimensional function �M

�
(�; �) is the classical lin-

ear regression problem with constraints. In the present work, the multidimensional 
cardinal B-spline regression is used (Friedman et  al. 2001), where �M

�
(�; �) is 

approximated using a linear combination of B-splines defined on uniform intervals.

(13)M
�
(�; h1,… , hp = 0,… , hn) = M

��kp
(�; ��hp)�k0,kp ,∀p ∈ 1… n,

(14)M
�
(�; h1,… , hp → ∞,… , hn) = M

��kp
(�; ��hp)Mkp

,∀p ∈ 1… n.

(15)M
�
(�; �) = M0

�
(�; �) + �M

�
(�; �),

(16)

M0

�
(�; �) =

1
∑n

p=1
e−ahp+e−a(1−hp)

�
n�

p=1

Mk0…kn
(�; h1,… , hp = 0… , hn)e

−ahp

+
�n

p=1
Mk0…kn

(�; h1,… , hp → ∞… , hn)e
−a(1−hp)

�
, ∀p = 1… n,
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where �i1,…,in
 are coefficients of B-spline approximation, and Bi,r(t) is the i th 

B-splines of order r on uniformly divided knot sequence {0, dr, 2dr… rmax} , which 
are separated by step dr that increases with the order of moment �M

�
(�; �) , thus pro-

viding more regularized approximation for higher orders and detailed approximation 
for lower orders. In practice, only orders up to 5 can be adequately calculated from 
the data; therefore, dr = rmax∕6 , dr = rmax∕4 , and dr = rmax∕2 are used for moments 
of order 3, 4, 5, respectively. For second-order moments, standard variogram mod-
eling is utilized (David 1988).

The coefficients �i1,…,in
 are found using a least-squares algorithm to fit points, 

which are the residual of high-order moments calculated from the data samples 
and trend M0

�
(�; �) from Eq. (16)

under zero boundary constraints

where �d are centers of lags used to calculate high-order statistics from the data (12).
Using all the above, the high-order moments are recursively constructed by 

starting from the second-order indicator moments. Figure 4 illustrates the approx-
imation process. First, second-order indicator moments Mk0kp

(op; hp), p = 1… n , 
depicted by red solid lines in Fig. 4(a), are calculated from the basic variogram 
model. Then, the trend M0

k0,k1,k2
(�; �) , which is the surface in Fig. 4(a), is calcu-

lated using these boundary conditions and Eq.  (16). Next, the residuals 
�M

k0,k1,k2
(�; �d) , which are the black points in Fig. 4(b), are estimated by subtract-

ing the trend M0

k0,k1,k2
(�; �) from the sampling statistics M̂k0,k1,k2

(�; �d) using 
Eq. (18). Then, residual spatial moments �M

k0,k1,k2
(�; �) , depicted as the surface in 

Fig. 4(c), are approximated from residuals �M
k0,k1,k2

(�; �d) and zero boundary con-
ditions (red lines in Fig. 4c), using the B-spline regression in Eq.  (17). Finally, 
the third-order spatial indicator moments, shown as the surface in Fig. 4(d), are 
retrieved by adding residual spatial moments �M

k0,k1,k2
(�; �) to the trend 

M0

k0,k1,k2
(�; �) using Eq. (15).

The calculated third-order spatial indicator moments M
k0,k1,k2

(�; �) are used as 
the boundary conditions for the fourth-order spatial indicator moments 
M

k0,k1,k2,k3
(�; �) (Fig. 5). Note that the fourth-order moment is a three-dimensional 

function that requires eight boundary conditions. The same procedure is recur-
sively repeated for the fourth and fifth orders.

(17)�M
�
(�; �) =

�∑

i1=1

⋯

�∑

in=1

�i1,…,in
Bi1,r

(h1)…Bin,r
(hn),

(18)𝛿M
�
(�; �d) = M̂

�
(�; �d) −M0

�
(�; �d),

(19)
�M

�
(�; h1,… , hp = 0,… , hn) = 0,

�M
�
(�; h1,… , hp → ∞,… , hn) = 0,∀p = 1… n,
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4  Applications

4.1  Olympic Dam Copper Deposit, Australia

Olympic Dam, located in South Australia, is the fourth largest copper deposit in 
the world. A part of the Olympic Dam deposit covering an area 1 km by 1 km is 
used here to demonstrate the application of the proposed simulation method in a 

Fig. 4  Approximation of the third-order spatial indicator moments M
k0,k1,k2

(�;�) : a calculating the 
trend M0

k0,k1,k2
(�;�) from boundary conditions shown by red lines, b residuals �M

k0,k1,k2
(�;�d) with 

sampling statistics and zero boundary conditions, c B-spline regression of the residual third-order map 
�M

k0,k1,k2
(�;�) , d the final reconstructed third-order spatial indicator moments M

k0,k1,k2
(�;�)

Fig. 5  The third-order indicator moments (left) M
k0,k1,k2

(�;�) as the boundary condition for the fourth-
order indicator moments M

k0,k1,k2,k3
(�;�)



 Math Geosci

1 3

case study. The grade cut-off of 1% Cu is applied to the available drillhole data 
to define two categories to be simulated; then results are validated using high-
order spatial indicator moments. Data are available in 515 exploration drill-holes 
shown in Fig. 6. Three-dimensional simulated realizations are generated on a reg-
ular grid with 100 × 100 × 50 grid nodes and a block of 10 × 10 × 10  m3. Figure 7 
depicts vertical sections from a simulated realization of the deposit. The figure 
shows that the proposed method generates spatially complex geometric structures 
that honor the drill-hole data. The spatial statistics and contacts are validated 
using high-order spatial indicator moments.

It should be noted that the simulations are performed using all possible direc-
tions from the quadraginta octant division. For the third-order indicator moments, 
there are 1,128 possible combinations of directions, and each of the combina-
tions has  23 possible combinations of categories 0 and 1. Thus, the total num-
ber of indicator maps is 9,024. For the fourth-order indicator moments, there are 
17,296 possible combinations of directions, which results in 138,368 forth-order 
indicator maps. Without a doubt, the information in these indicator maps is quite 
similar, and the complex high-order relations can be expressed using a smaller 
number of moments. Therefore, only the orthogonal directions, so-called L-shape 
templates, are used for validation purposes.

Fig. 6  Drill-holes from Olym-
pic Dam copper deposit. Red 
represents grades above 1% Cu 
and blue below

Fig. 7  Vertical sections of a simulated realization. Red represents grades above 1% Cu and blue below. 
Drill-holes are traced by black outlines, and white sections represent missing values
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The third-order indicator moment maps M̂111(�1, �2) are calculated using the 
L-shape template (Mustapha and Dimitrakopoulos 2010a) with lags �1 = (idx, 0) 
�2 = (0, jdy) , indexed by i = 0… 8 , j = 0… 8 , where dx and dy are 50 m × 50 m. The 
moment map M̂111(�1, �2) shows the probability of having category 1 in three points 
separated from each-other by lags along X and Y (L-shape). Note that validation of 
high-order moments is done with an approach with regular steps and two directions 
as in Mustapha and Dimitrakopoulos (2010a, b), in contrast to the octant approach 
with logarithmically increasing lags in Sect. 3. The logarithmically increasing lags 
with small steps close to the origin are helpful to better inform the approximation of 
high-order moments close to the central node, whereas for validation it is important 
to visualize both short-range and long-range connectivity. The moment map shows 
the probability of having copper grades above 1% at three points separated by lags 
along X and Y, that is, the continuity of high grades. As can be seen in Fig. 8, the 
simulated realization generated by the proposed method (Fig.  8b) reproduces red 
and yellow areas in the moment map of the hard data (Fig. 8a), that is, continuity 
ranges. As shown above, values along axes are indicator moments of order 2, that 
is the conventional indicator covariances. The third-order indicator moment maps 
M̂101(�1, �2) are shown in Fig. 9. The moment map shows the probability of having 
copper grades above 1% at two points in the Y direction and copper grade below 
1% at one point in the X direction. M̂101(�1, �2) reflects the contact plane between 
the copper grades above and below 1%, respectively, in the east–west direction. As 
can be seen in Fig.  9, the simulation using the proposed method (Fig.  9b) repro-
duces the spatial characteristics of the data between copper grades above and below 
1%  (Fig.  9a), represented by the yellow–red cone in the lower right part of the 
moment maps in Fig. 9.

The third-order indicator moment maps �̂110(h1, h2) are shown in Fig. 10. Simi-
larly to the above, the moment map shows the probability of having copper grades 
above 1% at two points in the X direction and copper grade below 1% at one point in 
the Y direction. M̂101(�1, �2) reflects the contact plane between copper grades above 
and below 1%, respectively, in the north–south direction. As can be seen in Fig. 10, 
the realization generated using the proposed method (Fig.  10b) reproduces the 

Fig. 8  The third-order indicator moment maps M̂111(�1,�2) of a the available data, and b a simulated 
realization generated with the proposed method
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contact between copper grades above and below 1% as found in the data (Fig. 10a), 
represented by the yellow–red cone in the upper left part of the moment maps in 
Fig. 10.

The fourth-order spatial indicator moment M̂1000(�1, �2, �3) (Fig. 11) is calculated 
with lags �1 = (idx, 0) , �2 = (0, jdy) , and �3 = (0, kdz) indexed by i, j, k = 1… 8 , 
where dx , dy , and dz are 50 m × 50 m × 50 m. The moment M̂1000(�1, �2, �3) reflects 
the complex contact between copper grades above and below 1%, where grades 
with values above 1% are surrounded by grades below 1% in the X, Y, and Z direc-
tions. The fourth-order moment map of the simulation using the proposed method 
(Fig. 11b) reproduces the yellow–red area in the moment map of the data (Fig. 11a). 
All other spatial indicator moments, that is, M̂k1k2k3

(�1, �2) , M̂k1k2k3k4
(�1, �2, �3)

,∀k1, k2, k3, k4 = 0, 1 , were analyzed and found consistent with the spatial indicator 
moments from the drill-hole data.

To highlight the importance of high-order calculations, a realization from the 
sequential indicator simulation  method  (SISIM)  is analyzed in terms of third-
order spatial indicator moments M̂k1k2k3

(�1, �2) . A section of the realization, shown 

Fig. 9  The third-order indicator moment maps M̂101(�1,�2) of a the data, and b a simulation using the 
proposed method

Fig. 10  The third-order indicator moment maps �̂110(h1, h2) of a the data, and b a simulation using the 
proposed method
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in Fig. 12(a), exhibits low nonlinear connectivity and a high number of small dis-
connected shapes. This is confirmed by third-order indicator moments M̂111(�1, �2) , 
M̂101(�1, �2) , M̂110(�1, �2) in Fig. 12b–d, respectively. In contrast to Figs. 8, 9, and 
10, the third-order indicator moments from the SISIM method have low values for 
non-zero lags (�1, �2) and a high contrast between values along axes, i.e. second-
order statistics and values away from the axes. This indicates that the realization 
from the SISIM method does not reproduce complex relations of data and exhibits 
lower nonlinear connectivity of related categories.

4.2  Escondida Norte Copper Deposit, Chile

Escondida is a large porphyry copper deposit in Chile consisting of two open-pit 
mines, Escondida and Escondida Norte. A part of Escondida Norte, 2.5  km by 
2.5 km by 0.5 km, is used in this section to present a case study. Four mineralization 
zones are simulated using the proposed approach: oxides, sulfides, mix of oxides 
and sulfides, and waste. Complex geometrical shapes of mineralization zones and 
geological contacts are validated here using high-order spatial indicator moments. 
High-order spatial indicator moments allow us to analyze cross-categorical relations 
and take into account geological aspects of mineral deposits, such as which category 
is always embedded within another, which categories cannot be in contact, and so 
on.

Fig. 11  The fourth-order 
indicator moment maps 
M̂1000(�1,�2,�3) of a the data, 
and b a simulation using the 
proposed method
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The drill-holes available are shown in Fig.  13. In general, mineralization 
zones are quite variable, and the uncertainty of related contacts need to be quan-
tified. The three-dimensional simulated realizations generated are defined on 
115 × 107 × 55 grid of blocks of 25 × 25 × 15  m3 size. Sulfides are predominantly 
located in the bottom part and are covered by layers of mix and oxide zones. The 
upper part of the deposit consists mostly of waste materials. Vertical and horizon-
tal sections of two simulated realizations using the proposed method are shown in 
Figs. 14 and 15, respectively. The simulations honor the layered structure of the 
mineralization zones and demonstrate higher variability of oxides and mix miner-
alization zones.

Fig. 12  Section of a realization from the SISIM method a and corresponding third-order indicator 
moment maps. b–d M̂111(�1,�2) , M̂101(�1,�2) , M̂110(�1,�2)

Fig. 13  Drill-holes from 
Escondida Norte copper mine; 
colors represent the mineraliza-
tion zones
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The third-order indicator moment maps M̂OSS(�1, �2) (O stands for oxides, S 
for sulfides, M for mix, and W for waste) are calculated using lags �1 = (idx, 0) 
�2 = (0, jdy) indexed by i = 0… 8 , j = 0… 8 , where dx and dy are 50 m × 50 m. 
The moment map shows the probability of having oxide separated from sulfides 
by lags along X and Y, that is, a complex contact between oxides and sulfides. 
As can be seen in Fig. 16, the simulated realization generated with the proposed 
method (Fig. 16b) reproduces the red and yellow areas in the moment map of the 
data (Fig. 16a). The third-order indicator moment maps M̂SSW (�1, �2) are shown in 
Fig. 17. The moment map shows the probability of having sulfides at two points 
in the X direction and waste in the Y direction. M̂SSW (�1, �2) reflects the contact 
plane between sulfides and waste with a north to north–south direction. As can be 
seen in Fig. 17, the simulation using the proposed method (Fig. 17b) reproduces 
the corresponding spatial relations found in the data (Fig. 17a).

The fourth-order spatial indicator moments M̂MOWM(�1, �2, �3) (Fig.  18) 
are calculated with lags �1 = (idx, 0) , �2 = (0, jdy) , and �3 = (0, kdz) indexed 
by i, j = 1… 8 , k = 1… 5 , where dx , dy , and dz are 50  m × 50  m × 50  m. The 
moment M̂MOWM(�1, �2, �3) reflects the spatial aspects of the contact between 
mixed oxides and waste zones. The fourth-order moment maps of the simulation 

Fig. 14  Vertical section from two simulated realizations; colors represent mineralization, and drill-hole 
locations are represented by black outlines

Fig. 15  Horizontal section from two simulated realizations; colors represent mineralization, and drill-
hole locations are represented by black outlines
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using the proposed method (Fig.  18b) reproduce the yellow–red area in the 
moment map of the data (Fig. 18a).

Similarly to the above, all other spatial indicator moments, that is, 
M̂k1k2k3

(�1, �2) , M̂k1k2k3k4
(�1, �2, �3),∀k1, k2, k3, k4 = {S,O,M,W} , of the simu-

lated realizations were analyzed and found consistent with the spatial indicator 
moments from the drill-hole data.

Fig. 16  The third-order indicator moment maps M̂
OSS

(�1,�2) of (a) the data, and (b) a simulated realiza-
tion generated with the proposed method

Fig. 17  The third-order indicator moment maps M̂
SSW

(�1,�2) of a the hard data, and b the simulation 
using the proposed method
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5  Conclusions

This paper presents a new data-driven, high-order sequential method for the simula-
tion of categorical random fields. The sequential algorithm is based on the B-spline 
approximation of high-order spatial indicator moments that are consistent with each 
other. The main distinction from commonly used MPS methods is that in the pro-
posed approach, conditional distributions are constructed using high-order spatial 
indicator moments as functions of distances based on hard data. Thus, simulated 
realizations can be generated without a TI. Note that in applications with relatively 
large data sets, such as the simulation of mineral deposits, the higher-order statistics 
are deduced from hard data. However, the option of adding a TI to a data set is avail-
able only if sparse data sets are available, as is the case with petroleum reservoirs.

The basic concept of the method presented is to use recursive approximation 
models with enclosed boundary conditions, which are derived from the nested 
nature of high-order spatial indicator moments, as presented herein. To provide a 
robust estimation, the regularized B-splines are used. An additional critical aspect of 
the proposed approach is that different amounts of information can be retrieved for 
different levels of relations. Each order of spatial statistics is approximated using the 
appropriate number of B-splines to provide robustness to the approach and to avoid 
overfitting. Thus, lower-order statistics are estimated with a higher resolution than 
the higher-order statistics.

The simulation algorithm presented was tested at two real copper deposits, with-
out using TIs. The results of the applications demonstrate that the proposed method 
reproduces complex spatial patterns and preserves the high-order spatial statistics in 

Fig. 18  The fourth-order 
indicator moment maps 
M̂

MOWM
(�1,�2,�3) of a the hard 

data and b the simulation using 
the proposed method
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the data. While the proposed technique is fully data-driven, information from a TI 
can be incorporated with the proposed model as a trend to capture high-frequency 
features when available in the TI. Further research may consider improving the 
approximation methods.
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Appendix

Consider an arbitrary spatial configuration of three points in space. Using Eqs. (7) 
and (8), the third-order spatial indicator moment can be expressed as

Let us consider that Z0 has the same location as Z1 , i.e. h1 = x1 − x0 = 0 . Then, Z0 
has the same value as Z1

It is not hard to see that the term Ik0 (Z0)Ik1 (Z0) is zero when k1 ≠ k0 , and otherwise 
equal to 

[
Ik0 (Z0)

]2
= Ik0 (Z0) . Therefore,

Thus, Eq. (22) connects third-order spatial statistics with second-order statistics and 
can be generalized for high-order spatial statistics in the form of Eq. (13)

In Eq. (20), let us consider the other extreme h1 → ∞ ; then, under the assumption 
of finite spatial correlation length of the random field � , the random variable Z1 can 
be considered as independent from random variables Z0 and Z2 . Then, using Eq. (3),

(20)Mk0,k1,k2
(Z0, Z1, Z2) = E

[
Ik0 (Z0)Ik1 (Z1)Ik2 (Z2)

]
.

(21)
Mk0,k1,k2

(Z0, Z1, Z2) = E
[
Ik0 (Z0)Ik1 (Z1)Ik2 (Z2)

]
= E

[
Ik0 (Z0)Ik1 (Z0)Ik2 (Z2)

]
, when x0 = x1.

(22)
Mk0,k1,k2

(Z0, Z1, Z2) = E
[
Ik0 (Z0)Ik2 (Z2)

]
�k0,k1

= Mk0,k2
(Z0, Z2)�k0,k1 , when x0 = x1.

M
�
(�; h1,… , hp = 0,… , hn) = M

��kp
(�; ��hp)�k0,kp ,∀p ∈ 1… n,

Mk0,k1,k2
(Z0, Z1, Z2) = P(Z0 = k0, Z1 = k1, Z2 = k2) = P(Z0 = k0, Z2 = k2)P(Z1 = k1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Thus, Eq. (23) connects third-order spatial statistics with second-order statistics and 
can be generalized for high-order spatial statistics in the form of Eq. (14)

M
�
(�; h1,… , hp → ∞,… , hn) = M

��kp
(�; ��hp)Mkp

,∀p ∈ 1… n

.Graphically, for the third-order spatial indicator moments, the boundary con-
ditions, i.e. second-order spatial indicator moments, are show on Fig.  19. The 
three-point spatial indicator moment M000(�; h1, h2) with k0 = k1 = k2 = 0 is con-
sidered. The solid violet lines represent second-order spatial statistics at h1 = 0 or 
h2 = 0 , i.e. M000(�; h1 = 0, h2) = M00(o2; h2) and M000(�; h1, h2 = 0) = M00(o1; h1) , 
respectively. The red solid lines represent second-order spatial statistics when 
either h1 → ∞ or h2 → ∞ , i.e. M000(�; h1 → ∞, h2) = M00(o2; h2)M0(Z1) and 
M000(�; h1, h2 → ∞) = M00(o1; h1)M0(Z2) , respectively.

In summary, all-order moments are connected via boundary conditions:

1. Marginal distribution P
(
Z0 = k0

)
= M

k0
(Z0) , i.e. the first-order moment is the 

boundary for the second-order moment Mk0,k1
(Z0, Z1)

2. The second-order moment is the boundary for the third-order moment. For exam-
ple,

3. The third-order moment is the boundary for the fourth-order moment. For exam-
ple,

(23)Mk0,k1,k2
(Z0, Z1, Z2) = Mk0,k2

(Z0, Z2)Mk1
(Z1).

Mk0,k1

(
Z0, Z1

)
= E

[
Ik0

(
Z0
)
Ik1

(
Z1
)]

= E
[
Ik0

(
Z0
)]
�k0,k1

= Mk0

(
Z0
)
�k0,k1

, when x0 = x1

Mk0,k1,k2
(Z0, Z1, Z2) = E

[
Ik0 (Z0)Ik2 (Z2)

]
�k0,k1

= Mk0,k2
(Z0, Z2)�k0,k1 , when x0 = x1.

Mk0,k1,k2,k3

(
Z0, Z1, Z2, Z3

)
= E

[
Ik0

(
Z0
)
Ik1

(
Z1
)
Ik2

(
Z2
)
Ik3

(
Z3
)]

= E
[
Ik0

(
Z0
)
Ik1

(
Z1
)
Ik2

(
Z2
)]
�k0,k3

= Mk0,k1,k2

(
Z0, Z1, Z2

)
�k0,k3

, when x0 = x3.

Fig. 19  The three-point 
spatial indicator moment map 
M000(�; h1, h2) . The solid violet 
lines represent second-order 
spatial statistics at h1 = 0 or 
h2 = 0 , and the solid red lines 
represent second-order spatial 
statistics when either h1 → ∞ or 
h2 → ∞
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