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A B S T R A C T   

The existing technologies that update geostatistically simulated models of mineral deposits cannot self-learn from 
incoming new information generated in operating mines and do not account for high-order spatial statistics. This 
work proposes a novel self-learning artificial intelligence algorithm that learns from incoming new information 
and accounts for high-order spatial statistics, in order to update the geostatistically simulated models of mineral 
deposits in real-time. The proposed algorithm uses deep policy gradient reinforcement learning with an actor and 
a critic agent. The grid nodes of the geostatistically simulated model are visited sequentially in a random path, 
the environment generates the states for each grid node, and feeds the state to the actor and critic agents that 
respectively predict and evaluate the updated property of the grid node The data is stored in a replay memory, 
which is sampled at regular intervals to train the agents. The trained agents are then used for further rounds of 
self-learning. An application of the proposed algorithm at a copper mining operation with incoming drilling 
machine sensor data (collected spatially), and processing mill sensor data (collected over time), demonstrates its 
applied aspects in updating the geostatistically simulated models of copper grades of the mineral deposit in real- 
time, while also reproducing spatial patterns and high-order spatial statistics.   

1. Introduction 

New information is readily available with conventional and new 
digital technologies that are used during production activities in in
dustrial environments. These technologies include advanced sensors and 
monitoring devices that are used during production activities in mines 
and oilfields, and in monitoring activities in the fields of hydrogeology, 
hydrology, meteorology, atmospheric sciences, geomorphology and 
oceanography. For example, in an industrial mining environment, global 
positioning systems can locate and monitor the status of the mining fleet 
in real-time (Chaowasakoo et al., 2014). Built-in control units can 
monitor the health and utilization of the mining fleet (Koellner et al., 
2004). Radiofrequency identification tags can locate and track the flow 
of materials from mines to customer (Rosa et al., 2007), and infrared and 
X-ray sensors can measure the geological properties of the materials that 
are mined, hauled, conveyed, processed and sold (Dalm et al., 2018; De 
Jong, 2004; Goetz et al., 2009; Iyakwari et al., 2016). The incoming new 
information is typically used to update the relevant properties of geo
statistically simulated models (hereafter, simulations). However, this 

new information, referred to as “soft data”, is partial and noisy, and is 
therefore uncertain. The soft nature of the new information is attributed 
to the characteristics of the related sensors that generate indirect mea
surements compared to, for example, those derived from the analysis of 
drillhole samples in geochemical laboratories. Assimilating incoming 
new information in simulations is similar to history matching in petro
leum reservoirs (Gilman and Ozgen, 2013; Oliver et al., 2008). History 
matching entails using production data such as oil production, flow rates 
and well pressure to update simulations of static reservoir properties, 
such as porosity and permeability, along with dynamic reservoir prop
erties, such as pressure and fluid saturation, to better match the 
observed production data. 

Ensemble Kalman filter (EnKF) is a thoroughly studied and applied 
method for history matching in petroleum and groundwater reservoirs 
(Aanonsen et al., 2009; Conjard and Grana, 2021; Oliver and Chen, 
2011; Xu et al., 2013). Benndorf (2020, 2015) introduced the use of the 
EnKF for updating geostatistically estimated models of mineral deposits. 
Yüksel et al. (2017, 2016) used the EnKF method to update simulations 
of ash content with incoming new information at a coal deposit. 
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Wambeke and Benndorf (2017) proposed a combination of the EnKF 
method with a forward simulator, while incorporating a connected 
updating cycle and a local neighborhood technique, to update the sim
ulations with the sensor data collected from the conveyor belt at a 
synthetic mining operation. Wambeke and Benndorf (2018) studied the 
effect of measurement volumes, blending ratios and sensor precision 
within the EnKF method. Wambeke et al. (2018) used a forward simu
lator and Bond’s work theorem with the EnKF method to update the 
simulations of the Bond work index – a geometallurgical property – at 
the Tropicana gold mine with the processing mill sensor data about 
throughput, power draw, feed and product size. Other methods for 
updating simulations of pertinent properties in a mineral deposit include 
co-simulation with soft data (Journel and Alabert, 1990; Neves et al., 
2018) and conditional simulation by successive residuals (Jewbali and 
Dimitrakopoulos, 2011; Vargas-Guzmán and Dimitrakopoulos, 2002). 
Methods such as gradual deformation (Hu, 2000), neighborhood algo
rithm (Sambridge, 1999), evolutionary algorithm (Schulze-Riegert and 
Ghedan, 2007), maximum a posteriori (Oliver, 1996), Markov chain 
Monte Carlo (Fu et al., 2017; Oliver et al., 1997), inverse sequential 
simulation (Xu and Gómez-Hernández, 2015), classification and 
regression tree algorithm (Gutiérrez-Esparza and Gómez-Hernández, 
2017), randomized maximum likelihood (Chen and Oliver, 2012; Sarma 
et al., 2006; Vo and Durlofsky, 2014), Tau-model (Naraghi and Srini
vasan, 2015), Markov mesh model (Panzeri et al., 2016), variants of the 
ensemble Kalman filter and co-simulation with soft data (Ángel et al., 
2021; Journel and Alabert, 1990; Li et al., 2021; Mao and Journel, 
1999a; Soares et al., 2017) have also been used for updating simulations 
of pertinent properties of petroleum and groundwater reservoirs. The 
above-mentioned methods update the relevant properties of simulations 
but do not learn from the incoming new information. Learning from new 
information refers to extracting complex patterns and relationships be
tween new information and simulations, while maintaining this infor
mation for future use. Additionally, they do not account for nor respect 
high-order spatial statistics while updating the simulations. 

Recent developments in history matching include artificial intelli
gence (AI) algorithms based on supervised machine learning, such as a 
convolutional neural network (CNN) with principal component analysis 
(PCA) (Liu et al., 2019) and stepwise CNN-PCA with recurrent neural 
network (RNN) (Tang et al., 2019). The CNN-PCA method trains a CNN 
to post-process a given PCA geostatistical model, which involves using a 
training dataset to learn to minimize the difference between the style 
and content of the generated post-processed PCA model, and the target 
style and content calculated from either a training image or an initial 
simulation. The CNN-PCA-RNN trains an RNN to generate flow simu
lation results for given simulations of porosity and permeability, and 
involves using a training dataset to learn to minimize the difference 
between the predictions of the RNN and the targets generated by a 
high-fidelity flow simulator. These methods aim to minimize the 
mismatch between the targets and generated outputs for a given training 
dataset and, therefore, cannot perform well if the inputs differ greatly 
from the training dataset. 

The work presented herein, which is inspired by the continuous 
control algorithm (Lillicrap et al., 2015), proposes a novel self-learning 
AI algorithm that trains agents (typically function approximators like 
neural networks) to update simulations of pertinent properties of min
eral deposits in real-time with new incoming information. The proposed 
algorithm uses deep deterministic policy gradient reinforcement 
learning with an actor and a critic agent (in this work, both are CNN) to 
learn about the relationships between incoming new information and 
simulations. These relationships are defined by high-order spatial sta
tistics. High-order spatial statistics (Dimitrakopoulos et al., 2010; Min
niakhmetov et al., 2018; Minniakhmetov and Dimitrakopoulos, 2021; 
Mustapha and Dimitrakopoulos, 2011; Yao et al., 2021a, 2021b) can 
capture complex spatial geological characteristics, curvilinear features, 
geometric relations and the connectivity of extreme values needed for 
updating spatially dependent geological phenomena. In the following 

sections, first the proposed self-learning AI algorithm is detailed. Next, 
an application at a synthetic copper mining operation is explored to 
illustrate the efficiency and applied aspects of the proposed algorithm. 
Conclusions and directions for future research follow. 

2. Method 

Section 2.1 provides the notations used throughout this section. 
Section 2.2 details how new information is collected during day-to-day 
production activities in a mining operation that transform raw materials 
to products. Section 2.2 provides the details of the proposed self- 
learning AI algorithm. Section 2.3 details the process of using the pro
posed algorithm in an operating mining environment. 

2.1. Notations 

Table 1 shows the sets, indices, and constants and Table 2 presents 
the variables used in the proposed algorithm. 

2.2. Incoming new information in a mining operation and related 
notations 

Let Z(u) be a spatial random field with random variables Z(x), rep
resenting a property of a mining block at location x, with x = 1,…, N 
being the index of the blocks. For example, without loss of generality 
and for simplicity let’s assume that the grid shown in Fig. 1(a) represent 
Z(u). Initial direct measurements, І, derived from the analysis of 
exploration drillhole samples in geochemical laboratories is denoted by 
DI as shown in Fig. 1(a). A finite set of initial simulations, SI, is gener
ated using DI, that represent realizations, zs(u) of Z(u), and quantify the 
uncertainty about the spatial property of materials in the mine as shown 
in Fig. 1(b). 

The sensors installed on the drilling machines, B, located spatially 
within the mine, measure the quality of materials drilled. The new in
formation, NІ, generated spatially by the sensors on the drilling machine 
about the property of a block, Z(x), within the mine is denoted by NIB(x). 
The blasted materials are then loaded with shovels, S, into trucks, T. The 
sensors on the shovels measure the quantity, qi(x), and quality, NIi(x),
∀i ∈ S, of a block, Z(x), loaded. The sensors on the truck measure the 
quantity, qi(x), and quality, NIi(x), ∀i ∈ T, of Z(x) hauled. The incoming 
new information about the quality of blocks Z(x) located spatially within 
the mine is herein referred to as “spatial sensor data” and denoted by 
S ∈ B ∪ S ∪ T as shown in Fig. 1(c). The trucks haul the materials to 
different destinations, D as shown in Fig. 1(d). Let fd, ∀d ∈ D represent a 
function that mimics the transformation of materials at destination d. 
The sensors at the destinations measure the quality NId(qd), ∀d ∈ D, and 
quantity, qd, of materials at destination d. For example, a destination in a 
mining operation can be crusher as shown in Fig. 1(e) which has sensors 
to monitor the quality and quantity of materials. The materials from the 
destinations are transported via conveyor belts, C, to processing streams, 
P. The conveyor belt analyzer monitors the rate, qd,p,c, and quality, 
NIc(qd,p,c), ∀d ∈ D, p ∈ P, c ∈ C, of material transported via conveyor c 
from destination d to processing stream p. For example, the materials 
from crusher is transported to processing mill via a conveyor belt and 
analyzed via a conveyor belt analyzer as shown in Fig. 1(f). The pro
cessing streams generate the products which are sold to customers as 
shown in Fig. 1(g). Let fp, ∀p ∈ P denote the function that mimics the 
transformation of materials at processing stream p. The sensors at the 
processing stream measure the quality, NIp(qp), and quantity, qp, ∀p ∈ P, 
of products generated as shown in Fig. 1(g). Let T represent a set that 
consists of all the components in a mining operation that handle and 
process the materials and collect sensor data, i.e. T = {D, C, P}. Let 
NIi(qi) and qi represent the incoming new information collected over 
time with sensors at component i ∈ T about the quality and quantity of 
related materials, referred to herein as “temporal sensor data”. For 
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example, in Fig. 1 the temporal sensor data will be generated from a 
crusher, a conveyor belt and a processing mill. The tracking devices 
installed on component i ∈ T ∪ S of the mining operation, help to 
locate and track the flow of materials. Let Track represent an operator 
that can locate and track the flow of materials from the mine to the 
customers. For example, the materials flowing from mine to customer in 
Fig. 1(d–g) is tracked using the RFID tags in the blastholes and GPS 
installed on trucks. Track operator for this example will represent the 
data generated by RFID sensors and GPS about the location of materials 
while it flows from mine to customer. 

2.3. A self-learning AI algorithm 

The proposed self-learning AI algorithm for updating the simulations 
of pertinent properties of mineral deposits with incoming new infor
mation uses deep deterministic policy gradient (DDPG) reinforcement 
learning (Lillicrap et al., 2015) with an actor and a critic agent (in this 
work, both are CNN). The actor, μ, and critic, Q, agents (fθμ , and fθQ 

parametrized by θμ, and θQ, respectively) interact with an environment 
(see Sect. 2.3.1 for details of the environment) in discrete timesteps. 
Herein, a time step t denotes the point at which a block is visited along a 
random path visiting all blocks, similar to the sequential simulation 
approach (Deutsch and Journel, 1992; Gómez-Hernández and Srivas
tava, 2021; Journel, 1994). At each time step t the actor takes an action 
at ∈ R which is to predict the updated property Zs

′

(x) of a block located 
at x based on a state, st – which is fully observable – for a given simu
lation s ∈ SI. The action is executed in an environment, meaning that 
the block property, Zs(x), is updated with the taken action at to generate 
an updated simulation s

′

∈ SU and the agent receives a scalar reward rt 
and a next state st+1 (see Sect. 2.3.1 for calculation of rt and st+1). The 
process continues until all the blocks are visited and updated. The state, 
action, reward, next state tuple (st at , rt, and st+1 respectively) from all 
the time steps is stored in a replay memory buffer, R, of finite-sized 
cache. The replay memory is sampled uniformly at regular intervals to 
train both the actor and critic agents (see Sect. 2.3.3 for the training of 

Table 1 
Sets, indices, and constants used in the proposed algorithm.  

Parameters Definition 

Z(u) Spatial random field consisting of random variables Z(x), ∀x ∈ [1,
N]

Z(x) Random variable representing a property of a mining block at 
location x, ∀x ∈ [1,N] within the mine  

DI  Initial (I) drillhole (D) samples at the mine  

SI  Set of initial simulations generated usingDI for all blocks in Z(x)

Zs(x) Simulated property of a block located at x in s ∈ SI  

SU  Set of updated simulations for all blocks within the mine; s′

∈ SU  

Zs
′

(x) Simulated property of a block located at x in s′

∈ SU  

B,T,S,D,C,P  Set of blasthole drilling machines (B), trucks (T), shovels (S), 
destinations (D), conveyor belts (C), and processing streams (P), 
respectively in a mining operation  

NIB(x) New information (NI) generated spatially by sensors located on B 
about the quality of material drilled  

qi(x), NIi(x) New information generated spatially about the quantity and 
quality of materials, respectively at component i ∈ S ∪ T  

S  Set of sensors that generate spatial new information, i.e. S ∈ B ∪

S ∪ T  

qd, NId(qd) Temporal new information generated by the sensor at destination 
d ∈ D about the quantity and quality of materials, respectively  

fd  A function that mimics the transformation of materials at 
destination d ∈ D  

qd,p,c,

NIc(qd,p,c)

Temporal new information generated by the sensor at conveyor 
belt c ∈ C about the quantity and quality of materials, respectively 
transported from destination d ∈ D to processing stream p ∈ P  

qp, NIp(qp) Temporal new information generated by the sensor at processing 
stream p ∈ P about the quantity and quality of materials, 
respectively  

fp  A function that mimics the transformation of materials at 
processing stream p ∈ P  

T  Set of sensors that generate temporal new information, i.e. T ∈

D ∪ C ∪ P  
Track  Sensors that tracks the flow of materials from mine to customer 
Neighx  The neighborhood of a mining block located at x  
Zs(Neighx) Simulated property of all the block in s inside Neighx  

Zs
′

(Neighx) Simulated property of all the block in s′ inside Neighx  

Ds
′

x  Conditioning data event value for a block located at x in s′

Ns  Number of conditioning values in the data event in s ∈ SI  

Ns
ζ  Number of replicates for data event Ds

′

x found in s within Zs(Neighx)

ζs,i,j  Value of node j ∈ Ns
′

in the replicate i ∈ Ns
ζ  

Hs
′

x  The geometry of conditioning data event Ds
′

x defined by a 
normalized three-dimensional distance vector found in s ∈ SI  

NIS (Neighx) Spatial sensor data collected inside Neighx  

DS
x  Conditioning data event value for block located at x in S  

NS  Number of conditioning values in the data event in S  

NS
ζ  Number of replicates for data event DS

x found in S within 
NIS (Neighx)

ζS ,i,j  Value of node j ∈ NS in the replicate i ∈ NS
ζ  

HS
x  The geometry of conditioning data event DS

x defined by a 
normalized three-dimensional distance vector found in the S  

V(zs(x)) The conditional variance of a block located at x computed over SI  

Es
x  Average conditional variance for a block located at x over s ∈ SI 

inside Neighx  

γs  Adjustment factor to adjust the magnitude of Es
x  

E(NIS (x)) The error of spatial sensor data for a block located at x  

ENIS
x  Average error with the spatial sensor data in the neighborhood 

Neighx of a block located at x  

ENIi  Error in the new information collected from the component i ∈ D ∪

C ∪ P in a mining operation  
W  Legendre series polynomial order for the approximation of 

conditional probability distribution function 
τ  The soft target update parameter 

Batch size  

Table 1 (continued ) 

Parameters Definition 

NBS  

γ  Discount factor 
NR  Replay memory cache size 
NI  Training interval 

γMP
i  The adjxustment factor for adjusting the magnitude of model-based 

prediction error 
c  L2 regularization cost 
NU  Update training iterations 
NTE  Number of training episodes 
NT  Number of training iterations 
NUE  Number of update training episodes  

Table 2 
Variables used in the proposed algorithm.  

Variable Definition 

fθμ  Actor agent (a CNN) parameterized by θμ  

fθQ  Critic agent (a CNN) parametrized by θQ  

st  State at time t  
at  Action proposed by actor agent at time t  
rt  Reward computed by the environment at time t  
N t  Random noise process added to the actions at time t, for exploration 

during training  

f ′

θQ  Target critic CNN agent parameterized by θQ ′

f ′

θμ  Target actor CNN agent parameterized by θμ ′
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actor and critic agents). The algorithm terminates when NT iterations 
are reached, and the trained actor agent fθμ can be used to update the 
simulations SU, of pertinent properties of mineral deposits with the new 
information collected during production activities in a mining operation 
as detailed in Sect. 2.4. 

2.3.1. Environment 
In the context of the present study, an environment is a model of the 

mining operation that encapsulates how materials are extracted from 
the mines are transformed from raw materials to products with pro
duction activities. The agents interact with the environment by visiting 
mining blocks in a random path. The environment provides a repre
sentation of the mining operation during its interaction with the agents. 
The representation is called a state, and includes information such as the 
property of blocks in initial simulations, conditioning data events and 
geometry, new information, conditional variance of the blocks in the 
initial simulations, error in the new information, and the model-based 
predictions. The environment is also responsible for evaluating and 
using the action at taken by the agent to generate a scalar value rt , called 
a reward, and a new representation, called the next state st+1. The 
calculation of the state, reward, and next state in the environment are 
detailed next. 

2.3.1.1. State. The state st generated by the environment is comprised 
of 10 components. The first component is the property of the blocks in 
the initial simulation s ∈ SI including and surrounding the block located 
at x in consideration at time step t denoted by Zs(Neighx). Here, Neighx 
defines the neighborhood to consider around a block located at x, and is 
an input for the algorithm. The missing blocks in Neighx are initialized to 
− 1. For example, the neighborhood for the blocks close to the edges of 
the simulation grid will go outside the grid and, thus, these blocks are 
called missing blocks and are initialized to − 1. The second component of 
the state is the conditioning data event Ds

′

x which includes a property of 
Ns closest blocks for a block x in s

′

∈ SU. s
′ is formed by first creating a 

copy of s ∈ SI and then updating the simulated property of blocks that 
have been visited until time t − 1 with the actions taken by the actor 
agent. This captures the history of actions taken until t − 1. The quantity 
of conditioning data Ns is an input for the algorithm. Let’s consider a 

simple example as shown in Fig. 2. Suppose Zs(Neighx) and x are 
respectively represented by the dashed box and black circle in Fig. 2(a), 
then the ends of black arrows in Fig. 2(b) constitutes Ds

′

x . 
The third component of the state is the incoming spatial new infor

mation S including and surrounding a block located at x, denoted by 
NIS (Neighx). The absent values in the spatial new data are initialized to 
− 1. The fourth component of the state is the conditioning data event DS

x 

found in the spatial sensor data which includes the NS closest spatial 
sensors’ data. Suppose NIS (Neighx) and x are respectively represented 
by the dashed box and the black circle in Fig. 2(c), then the ends of black 
arrows in Fig. 2(c) constitutes DS

x . The quantity of conditioning data NS 

is computed based on the density of the spatial sensor data. The fifth 
component of the state is the geometry of the conditioning data events 
Ds

′

x and DS
x ,defined by normalized distance vectors Hs

′

x and HS
x , 

respectively (the distance of the conditioning data point from a block 
located at x). The sixth component of the state is the average conditional 
variance Es

x associated with a property of a block located at x in s ∈ SI 

inside Neighx. Es
x is calculated as: 

Es
x =

γs

|Neighx|

∑

i∈Neighx

V(Zs(xi)), ∀s ∈ S
I (1)  

where, V(Zs(xi)) is the conditional variance of the initial simulated 
property of a block xi and γs is an adjustment factor to adjust the 
magnitude of the conditional variance of the simulations. The seventh 
component of the state is the error in the spatial sensor data ENIS

x 
collected in Neighx of a block located at x. The error with each of the 
spatial sensor data is an input to the algorithm. ENIS

x is computed by 
averaging the error in the available spatial sensor data in Neighx as: 

ENIS

x =
1

|Neighx|

∑

i∈Neighx

E(NIS (xi)) (2) 

The eighth component of the state is the incoming temporal sensor 
data, qi,NIi(qi), ∀i ∈ T . The ninth component of the state is the errors in 
the temporal sensor data, ENIi ,∀i ∈ T , and is an input to the algorithm. 
Let’s consider a simple example as shown in Fig. 3 where mining blocks 
11 and 39 are entirely extracted on day 1 and blocks 20 and 34 are 
entirely extracted on day 2 The extracted materials are transported to 

Fig. 1. (a) Exploration drillhole data; (b) set 
of initial simulations generated using the 
exploration drillhole data; (c) spatial sensor 
data collected via sensors installed on dril
ling machines, shovels and trucks; (d) GPS 
and RFID tags help to track which blocks are 
extracted from the mine and sent to crusher; 
(e) sensor at the crusher measure quality and 
quantity of crushed materials; (f) sensors on 
conveyor belt measure rate and quality of 
conveyed materials, and (g) sensor at the 

processing mill measure the quality and quantity of processed materials.   

Fig. 2. State representation of (a) a property of the blocks in the neighborhood Neighx of a block located at x in consideration at time step t in the initial simulation 
s ∈ SI; (b) conditioning data event found in the simulation s

′

∈ SU until t − 1; and (c) spatial sensor data with its conditioning data event. 
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crusher 1 and thereafter to the mill 1. The GPS on the truck and the RFID 
tags in the blastholes of those blocks will help to track the material by 
generating origin and destination data as shown in Fig. 3. To ensure that 
tracking of materials from mining blocks to destinations data is appro
priate and useful, a mining operation needs to ensure that issues related 
to dilution and selective mining units are properly addressed as dis
cussed in Parker (2012). The sensor installed on the conveyor belt CB1 
measure the grade of materials passing on the conveyor belt along with 
an associated error for such measurements. The tenth component of the 
state is the model-based prediction for the updated simulation s′

∈ SU at 
the location of the different temporal sensor data (see Sect. 2.3.1.2 
shows details of how model-based prediction is generated). Calculating 
the model-based prediction for the updated simulation captures the 
history of the actions taken until time step t − 1. If there are no new 
temporal sensor data, then such data along with their model-based 
predictions are initialized to − 1. 

2.3.1.2. Model-based predictions. Model-based predictions, MP, calcu
late the values that should have been observed based on simulations at 
the location where temporal sensor data was collected. The model-based 
prediction MPs

d at a destination d for a simulation s is calculated with Eq 
(3). 

MPs
d = f d

(
∑

i∈T
Track(qi(x);Zs(x))

)

, ∀s∈SI, d ∈ D (3) 

Equation (3) uses the Track operator first to find the quantities of 
materials, qi(x),∀i ∈ T, hauled with trucks i ∈ T to a destination d then 
utilizes the function fd to calculate how the materials are transformed at 
the destination, and finally uses the simulated property Zs(x) along with 
the tracking and transformation data to compute MPs

d. The model-based 
prediction MPs

c for a simulation s at a conveyor belt c which transports 
materials from a destination d to a processing stream p is calculated as: 

MPs
c =Track

(
MPs

d

)
sqd,p,c ,∀s∈SI, d ∈D, p∈P, c ∈ C (4) 

Equation (4) first uses the Track operator to find the quantity of 
material qd,p,c flowing from a destination d to a processing stream p with 
conveyor belt c and then utilizes the model-based prediction from Eq. 
(3) along with the tracking information to compute MPs

c . For example, in 
Fig. 3, Track represent the origin and destination data, qi(x) for blocks 11 
and 39 extracted on day 1 is 1 (since the block is extracted entirely), 
Zs(x) is the value of blocks 11 and 39 in simulation s, fd is a summation 
function for simplicity, and qd,p,c is 2 blocks per day. The model-based 
prediction MPs

p at a processing stream p for a simulation s is calcu
lated as follows: 

MPs
p = f p

(
∑

c∈C
Track

(
MPs

c

)
)

, ∀s∈SI, p ∈ P (5) 

Equation (5) first uses the Track operator to find the quantity of 
materials fed to a processing stream with different conveyors, then uses 
the function f p to find how materials are transformed into products, and 
finally uses the model-based prediction from Eq. (4) along with the 
tracking and transformation information to compute MPs

p. 

2.3.1.3. Action. The state st is fed to the actor agent, fθμ , to generate an 
action at ∈ R+ as shown below: 

at = fθμ (st) + N t (6)  

where, N t is the noise added to the action to ensure exploration during 
the training phase of the proposed AI algorithm. The action at is to 
predict the updated property, Zs

′

(x), of a block located at x based on a 
state st in a simulation s ∈ SI. 

2.3.1.4. Next state. The next state st+1 is generated by first replacing 
Zs(x) in Zs(Neighx) with the action at taken by the actor agent to form 
Zs

′

(Neighx), and then generating the model-based prediction with Zs
′

(x). 
The rest of the information in the next state st+1 remains the same as in 
the state st. 

2.3.1.5. Reward. The action at taken by the agent in the state st is 
evaluated by the environment to generate a reward rt. The reward rt 
leverages high-order spatial statistics and consists of three parts, as 
shown below: 

rt = rs,t + rS ,t +
∑

i∈T

ri,t (7) 

The first part, rs,t , evaluates the likelihood of at in the conditional 
probability distribution function (CPDF), which is generated by 
searching for replicates of a conditioning data event Ds

′

x within a simu
lation. The second part, rS ,t , evaluates the likelihood of an action at in 
the CPDF, which is generated by searching for replicates of DS

x within 
the spatial sensor data. The third part, ri,t , ∀i ∈ T , computes the error 
between a model-based prediction and temporal sensor data for at . The 
CPDF of a given conditioning data event is generated using high-order 
spatial Legendre moments (Dimitrakopoulos et al., 2010; Mustapha 
and Dimitrakopoulos, 2011; Yao et al., 2018). High-order spatial Leg
endre moments capture multi-point spatial statistics and approximates 
the CPDF of the center node Z(x) for a data event Ds

′

x using Legendre 
polynomials. The initial simulated property Zs(Neighx) inside Neighx is 
searched for all available replicatesNs

ζ , of Ds
′

x , defined by a distance 

vector, Hs
′

x . Let ζs,i,j denote the values of each node j ∈ Ns in the replicate 
i ∈ Ns

ζ . The replicates ζs,i,j are used to compute the CPDF of the center 
node Z(x) with Legendre polynomials as: 

fs

(
Z(x)

⃒
⃒Ds

′

x

)
≈ f̃ W

s

(
Z(x)|Ds

′

x

)
=

∑
i∈Ns

ζ
Xi(Z(x))s

∏
j∈Ns Xi

(
ζs,i,j
)

∑
i∈Ns

ζ

∏
j∈Ns Xi

(
ζs,i,j
) ,∀s ∈ SI (8)  

where, 

Xi(Z(j))=
∑W

w=0

(

w+
1
2

)

Pw
(
ζs,i,j
)
Pw(Z(j)) (9) 

W is the degree of the Legendre polynomials. Pw(Z(x)) is the wth- 
degree Legendre polynomial for center node Z(x) calculated as follows: 

Fig. 3. State representation of incoming temporal sensor data and its associated errors in measurements.  
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Pw(Z(x))=
1

2ww!
dw

dZ(x)w
[(

Z(x)2
− 1
)w] (10) 

For more details on the computation of CPDF with high-order spatial 
Legendre moments, readers are referred to Mustapha and Dimi
trakopoulos (2011) and Yao et al. (2018). The first part of the reward 
calculation is therefore calculated as: 

rs,t = λs ⋅
(

f̃ W
s

(
Z(x)= Zs(x)

⃒
⃒Ds

′

x

)
− f̃ W

s

(
Z(x)= Zs

′

(x)|Ds
′

x

))
,∀s ∈ SI (11)  

where, 

λs =
1 − Es

x

1 − Es
x + 1 − ENIS

x +
∑

i∈T 1 − ENIi
,∀s ∈ SI (12) 

λs is the weight associated with reproducing the spatial statistics of 
the initial simulation s. The second part of the reward calculation, rS ,t , 
which defines the likelihood of action at compared to the initial simu
lated property Zs(x) in the CPDF fS (Z(x)

⃒
⃒DS

x ) is calculated as: 

rS ,t = λS ⋅
(

f̃ W
S

(
Z(x)=Zs(x)

⃒
⃒DS

x

)
− f̃ W

S

(
Z(x)= Zs

′

(x)|DS
x

))
, ∀ s ∈ SI

(13)  

where, 

fS

(
Z(x)

⃒
⃒DS

x

)
≈ f̃ W

S

(
Z(x)|DS

x

)
=

∑
i∈NS

ζ
Xi(Z(x))⋅

∏
j∈NS Xi

(
ζS ,i,j

)

∑
i∈NS

ζ

∏
j∈NS Xi

(
ζS ,i,j

) (14)  

and 

λS =
1 − ENIS

x

1 − Es
x + 1 − ES

x +
∑

i∈T 1 − ENIi
,∀ s ∈ SI (15) 

λS is the weight associated with reproducing the statistics of the 
spatial sensor data. f̃W

s (Z(x)
⃒
⃒DS

x ) is the CPDF and is computed using Eq. 
(14). For this, the spatial sensor data NIS (Neighx) is searched for all 
replicates, NS

ζ of DS
x , defined by a distance vector, HS

x . Let ζS ,i,j, denote 
the values of each node j ∈ NS in the replicate i ∈ NS

ζ . The value of the 
replicates ζS ,i,j are used in Eqs. (9) and (10) to compute the CPDF with 
Eq. (14). The third part of the reward calculation, ri,t , ∀i ∈ T , which 
defines the difference between the model-based prediction and the 
temporal sensor data for action at and the initial simulated property 
Zs(x) is calculated as: 

ri,t = λi ⋅
( ⃒
⃒MPs

i − NIi
⃒
⃒ −
⃒
⃒MPs

′

i − NIi
⃒
⃒
)

⋅ γMP
i , ∀i∈T , s∈SI, s

′

∈ SU (16)  

where, 

λi =
1 − ENIi

1 − Es
x + 1 − ENIS

x +
∑

i∈T 1 − ENIi
, ∀i ∈ T , s ∈ SI (17) 

MPs
i and MPs

′

i are the model-based predictions at component i ∈ T 

(calculated using Eqs. (3)–(5)), for the initial simulated property Zs(x)
and the action at respectively. λi,∀i ∈ T is the weight associated with 
minimizing the difference between the model-based prediction and the 
temporal sensor data at component i. ri,t is a subtraction of two differ
ences, as seen in Eq. (16), as opposed to rs,t and rS ,t, which are sub
tractions of two probabilities. Therefore, an adjustment factor γMP

i is 
used in Eq. (16) to ensure that the third part of the reward calculation is 
of the same magnitude as the other parts. 

2.3.2. Actor and critic architecture 
The actor agent, fθμ , is a CNN which takes as input the state st which 

includes the initial simulation, spatial sensor data, and some additional 
data. The additional data includes the temporal sensor data, average 
conditional variance associated with a property of a block calculated 
using Eq. (1), error in the sensor data, and model-based predictions 

calculated using Eqs. (3)–(5). The additional data are not added as in
puts until the fully connected layer in the actor agent, as shown in Fig. 4 
(a). The actor agent takes an action at based on the state st, which is to 
predict the updated simulated property Zs

′

(x) of a block located at x. The 
critic agent, fθQ , is also a CNN, which takes as input the state st and as an 
additional input the action taken by the actor agent. Similar to the actor 
agent, the additional data and the action are not added as inputs until 
the fully connected layer in the critic agent as shown in Fig. 4(b). The 
critic agent is an action-value function which evaluates the action at 
taken by the actor agent in the state st . 

2.3.3. Actor-critic training 
The actor and critic agents are trained using DDPG reinforcement 

learning, as shown in Fig. 5. The agents are initialized randomly at time, 
t = 1, with weights, θμ and θQ, respectively. In addition to the actor and 
critic agents, two target agents (target actor and target critic), denoted 

by f ′

θμ , and f ′

θQ , and parametrized by θμ ′

and θQ ′

, are created to avoid 
divergence issues. The parameters of the target network are initialized as 

θμ ′

←θμ and θQ ′

←θQ. The replay memory buffer is initialized at time, t =

1. 
A random path is defined to visit all the blocks in the mineral deposit, 

and the point at which a block is visited along this path is referred to as a 
time step t. At t an action is taken by the actor agent based on the state st 
generated from the environment (see Sect. 2.3.1.3) for the mining block 
in consideration. The action is evaluated in the environment to generate 
the reward rt and the next state st+1. The state, action, reward, and next 
state tuple (st at, rt, and st+1 respectively) is stored in replay memory R. 
At every NI iteration the memory is sampled to generate mini batches of 
transitions (st at , rt, and st+1) of size NBS. The sampled mini batches are 
used to train the actor and critic agents. More specifically, the param
eters, θQ, of the critic agent are updated to minimize the temporal dif
ference error loss L given by: 

L=
1

NBS

∑

i∈NBS

((
ri + γ.f ′

θQ

(
si+1, f

′

θμ (si+1)
))

− (fθQ (si, ai))+ c ⋅
⃦
⃦θQ
⃦
⃦2
)

(18) 

c⋅
⃦
⃦θQ⃦⃦2 is an L2 regularization added to the loss function with a 

penalty cost of c, to avoid overfitting. The actor agent is trained by the 
sampled policy gradient given as: 

∇θμ J ≈
1

NBS

∑

i∈NBS

(
∇fθμ (si)fθQ (si, fθμ (si))∇fθμ (si)fθμ (si)

)
(19) 

The sampled policy gradient first takes the gradient of the critic 
agent parameters, θQ, with respect to the action at taken by the actor, 
and then takes the gradient of the actor agent parameters, θμ, with 
respect to the action at. The parameters of the trained actor and critic 
agents are then used to perform soft updates to the target agents as 
follows: 

θμ ′

← τθμ + (1 − τ)θμ ′

(20)  

θQ ′

← τθQ + (1 − τ)θQ′

(21) 

τ defines the strategy to blend the target agent parameters with the 
trained agent parameters. The new parameters of the actor and critic 
agents are used for further learning. The replay memory is used to 
ensure the mini-batch samples used for training are independently and 
identically distributed. In addition, the proposed algorithm learns in 
mini batches, i.e., offline to make efficient use of hardware optimiza
tions (Lillicrap et al., 2015; Sutton and Barto, 2017). 

2.4. Responding to incoming new information 

The proposed AI algorithm in Sects. 2.3.1–2.3.3 trains the CNN actor 
agent which can update the simulations of pertinent spatial properties of 
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mineral deposits with incoming new information in an operating mining 
environment. The spatial sensor data, NIi(x), i ∈ S , and temporal sensor 

data, qi, NIi(qi), ∀i ∈ T , along with the tracking sensor data, Track, and 
initial simulations, s ∈ SI, are fed to the AI algorithm as shown in Fig. 6. 
The AI algorithm then initializes the environment presented in Sect. 
2.3.1 with all the information. A random path is then defined by the 
environment to visit all the blocks within the mineral deposit. At each 
block, a state generated by the environment is fed to the trained actor 
agent that predict the updated simulated property of the block. The 
environment uses the action to generate the next state, and the process 
continues until all the blocks are visited. The updated simulated prop
erty of all the blocks forms the set of updated simulations SU. The 
updated simulations are then used to generate the updated model-based 
predictions. In parallel, the agent’s parameters are updated by training 
over the updated simulations and newly collected information. 

3. Application at a synthetic copper mining operation 

The proposed AI algorithm is programmed using Python and Ten
sorflow. It is applied in this section to a fully known public dataset (Mao 
and Journel, 1999b), which is adopted to represent a copper deposit in 
the present case study. Twenty initial simulations of copper grades are 
generated for two different areas, Area 1 and Area 2, of the copper de
posit using high-order simulation (Minniakhmetov et al., 2018; Yao 
et al., 2018). The two areas contain 416 drillhole data points each, 
sampled from the corresponding areas of the fully known dataset, with 
an average spacing of 5m using random stratified sampling. Each area of 
the deposit consists of 13,000 blocks of size 1 x 1 x 1 m3. The incoming 

Fig. 4. (a) Actor and (b) Critic agent configuration in the proposed AI algorithm.  

Fig. 5. Actor and critic agents training in the proposed AI algorithm.  

Fig. 6. Real-time learning and updating with incoming new spatial and tem
poral information. 
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spatial sensor data of copper grades is generated by randomly sampling 
2,600 data points with an average spacing of 1.3 m from the same sec
tions of the fully known dataset. The error in each spatial sensor data 
point is sampled from a normal distribution with a mean of 0 and a 
standard deviation of 0.45. The temporal sensor data of copper grades 
from the processing mill is generated by randomly sampling the same 
section of the fully known dataset in such a way that it imitates the 
process of collection of such data in a mining operation. The generated 
temporal sensor data contains 2,600 data points. The error in each 
temporal sensor data point is sampled from a normal distribution with a 
mean of 0 and a standard deviation of 0.6. The standard deviation of the 
normal distribution for error in the temporal sensor data is lower than in 
the spatial sensor data to reflect the quality of the respective sensors. In 
actual mining environments these sensors will show proportional effect 
in their related measurement errors, however, for simplicity in demon
strating the applied aspects of the proposed method proportional effect 
is not considered in this synthetic case study. 

The copper mining operation considered is shown in Fig. 7, and 
consists of a mine, a waste dump, a processing mill and a customer. 
Multiple drilling machines located at the mine perform the drilling op
erations and capture the spatial new information about the grade of the 
drilled mining blocks. The materials from the mine are extracted by two 
shovels and are loaded into trucks that haul the materials to either a 
processing mill or a waste dump. The processing mill blends and pro
cesses the received materials to generate copper products, which are 
transported to the customers. The sensors at the processing mill capture 
the temporal new information by measuring the grade of the generated 
copper products. 

Two different datasets – training and testing – are generated using 
the process outlined above to represent the operations and the collection 
of new information in two areas, namely Area 1 and Area 2, of the de
posit. The data from Area 1 of the deposit is used to train the proposed AI 
algorithm. In an operating mine, this dataset would be the historical 
data. The training results shows the learning capabilities of the proposed 
algorithm. The data from Area 2 of the deposit is used for testing the 
proposed algorithm. This dataset was never used for training and rep
resents how the proposed algorithm would be used in an operating mine 
to update the simulations of pertinent properties of the deposit with 
incoming new information. Section 3.2 discusses the training and testing 
results of the proposed algorithm and shows that the algorithm can be 
generalized and has practical applications in an operating mine. 
Throughout the presentation and discussion of the results, the fully 
known data and its histogram, variogram and spatial cumulant (Dimi
trakopoulos et al., 2010; Mustapha and Dimitrakopoulos, 2011) maps 
are also shown for reference. The fully known data is referred to here
after as the ground truth model. The algorithm takes less than 30 s to 
update the simulations of copper grade of the different areas of the 
deposit. 

3.1. Parameters 

The proposed AI algorithm is trained on an Intel® i7-8700 machine 
with an 8-core processor and an NVIDIA GeForce GTX 1050 GPU for 
approximately 2 days. The parameters used for the case study at the 
copper mining operation is detailed in Table 3. 

The actor and critic agent architecture are shown in Fig. 8. The total 
number of parameters for the actor agent is ≈ 497000, and the critic 
agent is ≈ 498000. 

3.2. Results 

The results described in this section for Area 1 of the deposit are 
related to the training of the agents in the proposed algorithm and shows 
its learning capabilities. The results for Area 2 of the deposit are related 
to testing of the agent and shows the generalization and applicability of 
the proposed algorithm. 

Fig. 9 and Fig. 10 show the drillhole data and two of the initial 
simulations of copper grade for Areas 1 and 2 of the deposit, respec
tively. The initial simulations for Area 2 in Fig. 10 show a presence of 
very different geological patterns compared to Area 1: the curvilinear 
structures are horizontal instead of vertical in Fig. 9. Fig. 11(a–c) and 
Fig. 12(a–c) show the spatial sensor data, the error in the spatial sensor 
data and the processing mill sensor data, respectively, that are collected 
during operations in Areas 1 and 2 of the deposit, respectively. 

Fig. 13(a–b) and Fig. 14(a–b) show one of the initial simulations and 
its corresponding updated simulation of copper grades, respectively, for 

Fig. 7. The copper mining operation.  

Table 3 
Parameters used for the case study at the copper mining operation.  

Parameters Value 

Neighx  21 x 21 

SI  20 

Ns  8, ∀s ∈ SI  

γs  10, ∀s ∈ SI  

N t  Ornstein-Uhlenbeck method, with a standard deviation of 1e-1 ( 
Uhlenbeck and Ornstein, 1930). 

W  10 
τ  1e-3 
NBS  500 
γ  0.99 
NR  1e6 
NI  65000 

γMP
i  10, ∀i ∈ T  

c  1e-3 
NU  0, No training was performed over testing data 
NTE  100 
NT  200 
NUE  0, No training was performed over testing data  
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Areas 1 and 2 of the deposit. The updated simulation as shown in Fig. 13 
(b) during training of the agents reproduces the curvilinear vertical 
structures, as inferred from initial simulations and spatial sensor data for 
this area. The proposed AI algorithm can also reproduce the horizontal 
curvilinear structures in the updated simulation, as inferred from the 

initial simulation, and the spatial sensor data for this area, even though 
the training data set had vertical curvilinear structures. In addition, the 
updated simulation closely resembles the ground truth model shown in 
Figs. 13(c) and Figure 14(c) for Area 1 and 2, respectively. 

The initial and updated simulations are validated through the 

Fig. 8. Actor and critic agent architecture used for the case study at the copper mining operation.  

Fig. 9. Drillhole data and the 2 of the initial copper grade simulations for Area 1 of the deposit.  

Fig. 10. Drillhole data and two of the initial simulations of copper grade for Area 2 of the deposit.  
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analysis of the histogram and variogram reproduction in Fig. 15. The 
initial and updated simulations both respect the histogram and vario
gram of the drillhole data. The updated simulations present a closer 
resemblance to the histogram and variogram of the spatial sensor data, 
as shown in Fig. 15(c) and (d), respectively. Fig. 16(a–b) show the 3rd 

and 4th order spatial cumulant maps (Dimitrakopoulos et al., 2010; 
Mustapha and Dimitrakopoulos et al., 2011), respectively, for the initial 
copper grade simulation for Area 2 of the deposit. The spatial cumulant 
maps of the updated simulation (Fig. 16(c–d)) show more connected 
structures, as seen in the spatial cumulant maps of the ground truth 

Fig. 11. (a) Spatial sensor data; (b) error in the spatial sensor data; and (c) processing mill sensor data of copper grades from Area 1 of the deposit.  

Fig. 12. (a) Spatial sensor data; (b) error in the spatial sensor data; and (c) processing mill sensor data of copper grades from Area 2 of the deposit.  

Fig. 13. (a) One of the initial simulations compared to (b) its corresponding updated simulation, and (c) the ground truth model of copper grades for Area 1 of 
the deposit. 
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model (Fig. 16(e–f)). The proposed AI algorithm was not trained with 
data from this area, yet it still reproduces the histogram, variogram and 
spatial cumulant maps, while also updating the initial simulations of 
copper grades for Area 2 of the deposit. The histogram, variogram, and 
cumulant maps validation results for Area 1 is provided in the supple
mentary materials. 

Fig. 17(a–b) and Fig. 18(a–b) show the model-based prediction for 
the initial and its corresponding updated simulation of copper grades, 
respectively, for Areas 1 and 2 of the deposit. The model-based predic
tion for the updated simulation shows fewer deviations from the pro
cessing mill sensor measurements, when compared to the initial 

simulation both for Area 1 and Area 2. A spread reduction (SR) criterion 
defined by Eq. 22 

SR=
1
⃒
⃒SI⃒⃒

∑

s∈SI

1
|T |

∑

i∈T

⃒
⃒MPs

i − NIi
⃒
⃒ −
⃒
⃒MPs

′

i − NIi
⃒
⃒ , ∀ s

′

∈ SU (22)  

is used to quantify the reduction in measurement vs predicted values 
error, for updated and initial simulations. The spread reduction value for 
Areas 1 and 2 of the deposit are 0.07 and 0.05, respectively, given the 
method proposed in this work. 

Fig. 14. (a) One of the initial simulations compared to (b) its corresponding updated simulation, and (c) the ground truth model of copper grades for Area 2 of 
the deposit. 

Fig. 15. Histogram and variogram of (a–b) the initial simulations compared to (c–d) the updated simulations of copper grades for Area 2 of the deposit.  
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4. Conclusions 

This paper proposes a new self-learning artificial intelligence algo
rithm that uses deep policy gradient reinforcement learning and lever
ages high-order spatial statistics to train actor and critic agents to update 
the simulations of pertinent spatial properties of a mineral deposit with 
incoming new information. The algorithm is general and can be applied 
to any mining operation with multiple sources of incoming new infor
mation. The algorithm visits the mining blocks within the deposit 
following a random path. For each block, a state representation is 
generated and fed to the actor and critic agent, in this case a convolu
tional neural network. The actor agent takes an action, which is to 
predict the updated spatial properties of the blocks based on the state 
representation. The action is evaluated by the critic agent. In parallel, 
the environment also evaluates the action using high-order spatial sta
tistics and generates both a reward and the next state representation. 
The state, action, reward and next state data is stored in a replay 
memory, which is sampled at regular intervals to train the agents. The 
improved agents are then used for further training. An application of the 

proposed algorithm at a synthetic copper mining operation demon
strates its efficiency and applied aspects. The case study shows that the 
algorithm can account for softness in the incoming new information 
(both spatial and temporal) to update the copper grade simulations of 
the deposit while reproducing geological patterns and high-order spatial 
statistics. The case study also highlights the learning and generalization 
capabilities of the algorithm through its application in different parts of 
the deposit, which have different geological patterns and curvilinear 
structures. The algorithm proposed in this work is not limited to the 
number of mining blocks used during training, however, the updating 
time during testing will increase as the number of blocks that need to be 
updated increases. The proposed algorithm assumes that the training 
and testing areas present similar geological characteristics. The exten
sion of the proposed algorithm to 3-dimensional deposits is straight
forward by using convolution 3D layers in the agent’s architecture. 
Future research will focus on expanding and applying the algorithm for 
multiple elements and using preferentially sampled new incoming in
formation from an operating mine. 

Fig. 16. Third- and fourth-order spatial cumulant maps for (a–b) the initial simulations compared to (c–d) its corresponding updated simulations and (e–f) the 
ground truth model of copper grades for Area 2 of the deposit. 

Fig. 17. Model-based prediction generated with (a) an initial simulation compared to (b) its corresponding updated simulation of copper grades for Area 1 of 
the deposit. 
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Computer code availability  

• Name of code: MineralDepositAI  
• Developer: Ashish Kumar (McGill University, FDA Building, Quebec, 

Canada; ashish.kumar@mail.mcgill.ca)  
• Year first available: 2020  
• Hardware required: Windows with NVIDIA GPU of at least 4 GB 

memory and compute capability of 6 and higher  
• Software required: Python Integrate Development Environment 

(Visual Studio, 2015 preferred)  
• Program language: Python 3.6.1 
• Program size: 85.8 MB (including source code, documentation, re

sults, and data)  
• Access to code: download from https://github.com/ashishrokz1993 

/MineralDepositAICG 
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