
minerals

Article

Applied Machine Learning for Geometallurgical Throughput
Prediction—A Case Study Using Production Data at the
Tropicana Gold Mining Complex

Christian Both * and Roussos Dimitrakopoulos *

����������
�������

Citation: Both, C.; Dimitrakopoulos,

R. Applied Machine Learning for

Geometallurgical Throughput

Prediction—A Case Study Using

Production Data at the Tropicana

Gold Mining Complex. Minerals 2021,

11, 1257. https://doi.org/10.3390/

min11111257

Academic Editors: Rajive Ganguli,

Sean Dessureault and Pratt Rogers

Received: 11 October 2021

Accepted: 10 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

COSMO—Stochastic Mine Planning Laboratory, Department of Mining and Materials Engineering,
McGill University, 3450 University Street, Montreal, QC H3A 0E8, Canada
* Correspondence: christian.both@mail.mcgill.ca (C.B.); roussos.dimitrakopoulos@mcgill.ca (R.D.)

Abstract: With the increased use of digital technologies in the mining industry, the amount of centrally
stored production data is continuously growing. However, datasets in mines and processing plants
are not fully utilized to build links between extracted materials and metallurgical plant performances.
This article shows a case study at the Tropicana Gold mining complex that utilizes penetration rates
from blasthole drilling and measurements of the comminution circuit to construct a data-driven,
geometallurgical throughput prediction model of the ball mill. Several improvements over a previous
publication are shown. First, the recorded power draw, feed particle and product particle size are
newly considered. Second, a machine learning model in the form of a neural network is used and
compared to a linear model. The article also shows that hardness proportions perform 6.3% better than
averages of penetration rates for throughput prediction, underlining the importance of compositional
approaches for non-additive geometallurgical variables. When adding ball mill power and product
particle size, the prediction error (RMSE) decreases by another 10.6%. This result can only be achieved
with the neural network, whereas the linear regression shows improvements of 4.2%. Finally, it is
discussed how the throughput prediction model can be integrated into production scheduling.

Keywords: tactical geometallurgy; data analytics in mining; ball mill throughput; measurement
while drilling; non-additivity

1. Introduction

In recent years, the amount of collected and centrally stored production data in the
mining industry has increased massively with the implementation of digital technologies.
Some examples of centrally stored datasets in operating mines are records of fleet man-
agement systems [1], measurement while drilling (MWD) [2], measurements of material
characteristics using sensor techniques [3], and other key performance indicators at the
processing plants. While potentially all mine planning activities can benefit from the analy-
sis of production data (data analytics), interdisciplinary fields such as geometallurgy can
particularly gain from this growing data. Geometallurgy aims to capture the relationships
between spatially distributed rock characteristics and its metallurgical behavior when
the mined materials are processed and transformed into sellable products. One pertinent
part of geometallurgy is the optimization of comminution circuits and the prediction of
comminution performance indicators such as throughput in the mineral processing facili-
ties [4–6]. However, value is only added to the operation when the gained geometallurgical
knowledge is integrated into decision-making processes, whereas appropriate methods are
still mostly lacking for the tactical or short-term production planning horizon [7]. Another
current limitation is the cost-intensive sampling and laboratory testing of rock hardness
and grindability [8]. The present article shows a case study at the Tropicana Gold mining
complex that demonstrates how production data combined with machine learning can be
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used to construct a data-driven geometallurgical throughput prediction model and how
such a model can subsequently be utilized for short-term mine production scheduling.

The optimization of comminution circuits has traditionally relied on well-accepted
comminution laws and ore hardness and grindability indices for ball/rod mills [9,10] and
SAG mills [11–13]. These comminution models are routinely used for optimized grinding
circuit design, using averages or ranges of ore hardness tests of the mineral deposits to be
extracted. Instead of using constant values representing whole deposits, geometallurgical
programs account for the heterogeneity of geometallurgical variables within the mineral
reserve and their effect on downstream processes over time [14]. A typical geometallurgical
workflow includes a spatial model, which comprises geostatistically simulated or estimated
variables (e.g., grindability). Several case studies have demonstrated how throughput rates
of a comminution circuit can be predicted using spatial geometallurgical models of hardness
and grindability indices in combination with comminution theory [15–18]. Although
some of these throughput models have demonstrated high accuracy in reconciliation
studies, there are notable challenges when using and integrating them into decision-making
processes such as short-term production scheduling. First, the geometallurgical sampling
program requires cost-intensive laboratory testing to obtain the abovementioned hardness
and grindability indices [8,13]. The high associated costs spent in early project stages can be
prohibitively large and typically result in very sparse sampling, although research is being
conducted to increase the number of samples by using alternate data measurement tools
and small-scale processing tests [19]. Second, the throughput prediction models are built
to evaluate the weekly or monthly performance of mine production schedules a posteriori,
instead of integrating them into short-term production scheduling. Third, none of the
models account for the inherent uncertainty of the geometallurgical variables stemming
from the imperfect knowledge of the orebody.

There have been efforts to incorporate geometallurgical hardness properties and
their associated geological uncertainty into mine production scheduling in single, open-pit
mines [20] and in mining complexes [21]. The stochastic optimization models are developed
for long-term production scheduling and require that hardness and grindability indices are
geostatistically simulated for volumes of selective mining units (mining block). However,
most of the frequently utilized hardness and grindability indices are non-additive [13,22,23].
Geometallurgical samples are also collected on large support scales [24,25] and are typically
very sparse, as mentioned earlier. These complicating factors make the joint spatial interpo-
lation of geometallurgical variables and their change of support from point measurements
to mining blocks challenging [25–28]. Morales et al. [20] optimize the mine production
schedule using precalculated mill throughputs and economic values for each block inde-
pendently. The method thus ignores that extracted materials are blended in stockpiles and
in processing facilities; consequently, the non-additive comminution behavior of blended
materials and resulting metal production cannot be correctly assessed. Kumar and Dimi-
trakopoulos [29] optimize a mining complex while including predefined ratios of hard and
soft rock, to achieve a consistent throughput in processing streams. However, these ratios
are defined arbitrarily, and details of short-term planning are not addressed.

Both and Dimitrakopoulos [30] present a new approach that integrates a geometallur-
gical throughput prediction model into short-term stochastic production scheduling for
mining complexes. The stochastic production-scheduling formulation builds upon simul-
taneous stochastic optimization of mining complexes [31,32] which optimizes pertinent
components of a mining complex in a single mathematical model and incorporates geolog-
ical uncertainty to minimize technical risk. Instead of using block throughput rates, the
production-scheduling formulation calculates the throughput of blended materials using
an empirically created throughput prediction model, learning from previously observed
throughput rates at the ball mill [30]. One limitation of this work is that the integrated
throughput prediction model so far has only considered rock hardness, density, lithology,
and weathering degree of the mineral reserve. This ignores that mill throughput rates also
depend on operating factors of the processing plant, such as power draw, utilization rates,
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and particle size distributions. Second, a multiple linear regression (MLR) has been used
for throughput predictions, which is unable to capture potential nonlinear relationships
among input variables and geometallurgical response.

The case study at the Tropicana Gold mining complex shown in this article expands
the method presented in Both and Dimitrakopoulos [30] in multiple ways. First, the
recorded plant measurements power draw, feed particle size, and product particle size
of the ball mill are newly considered to improve the prediction of ball mill throughput
rates. Second, a more powerful supervised learning method in the form of an artificial
neural network is tested and compared to MLR, since the addition of the new comminution-
related features increases the possibilities of nonlinear interactions between predictive and
response variables. The plant measurements, including the observed ball mill throughput,
are retrieved from the comminution circuit at the Tropicana Gold mining complex. The
other dataset used in this case study to predict ball mill throughput comprises penetration
rates from measurement while drilling (MWD). The use of this dataset is motivated by its
ability to indicate the strength and hardness of the intact rock [2,33,34]. The penetration
rates are converted into a set of hardness proportions per selective mining unit (SMU) which
has recently been proposed to build a link between intact rock hardness and comminution
performance of the rock in milling and grinding circuits [30]. The present article also
compares the prediction capabilities of hardness proportions to averages of penetration
rates. In this way, the effect of ignoring non-additivity of hardness-related geometallurgical
variables can be quantified, an issue that has had little attention in the literature thus far.

In the following sections, the components of the Tropicana Gold mining complex are
introduced first, together with all utilized production data that are used for the prediction of
ball mill throughput. The supervised machine learning model is discussed next, including
a statistical analysis of the present dataset and a hyperparameter calibration. Analysis of
results, discussion, and conclusions follow.

2. The Tropicana Gold Mining Complex and Utilized Production Data for Ball Mill
Throughput Prediction

The Tropicana Gold mining complex is located in western Australia in the west of the
Great Victoria Desert. The gold deposit is mined from four pits, Boston Shaker, Tropicana,
Havana, and Havana South (from north to south), as can be seen in the aerial view in
Figure 1. In addition, the mining complex contains a processing plant, stockpiles, a tailings
facility, and multiple waste dumps. Gold is produced onsite in a single processing stream,
consisting of a comminution circuit and a carbon-in-leach (CIL) plant.
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The displayed dataset in the four pits in Figure 1 shows the drilling rate of penetration
(ROP) from production drilling (blastholes), which is part of the measurement while
drilling (MWD) dataset collected at the Tropicana Gold mining complex. It is clearly visible
how ROP reflects the heterogeneity of the rock and decreases with depth. Exemplary,
easy-to-drill (softer) rock is found towards the surface (red colors at Havana South Pit
and Boston Shaker Pit), whereas difficult-to-drill (harder) rock is located deeper in the
pits (green–blue colors in Havana Pit, Tropicana Pit, and deeper cutback of Boston Shaker
Pit). Both and Dimitrakopoulos [30] demonstrate strong correlations between the rate of
penetration (ROP) of drilled rock and ball mill throughput when these rock parcels are
sent to the processing plant. They subsequently present a method that predicts ball mill
throughput using ROP. This article extends this work by utilizing additional measurements
in the processing plant related to ball mill throughput.

The relevant material flow in the mining complex is shown together with all utilized
production data in Figure 2. Detailed material tracking in daily intervals is performed
using truck cycle data, starting from the material extraction in the pits and ending at the
crusher. Crucially, material tracking includes all dumping and rehandling activities at
run-of-mine (ROM) stockpiles, since rehandled material accounts for 80–90% of processed
ore in the Tropicana Gold mining complex. In this way, ROP entries recorded in the pits
can be successfully linked to observed measurements in the processing plant, including
the observed throughput of the ball mill. Details of successful implementations of ma-
terial tracking that include stockpiles can be found in Wambeke et al. [35] and Both and
Dimitrakopoulos [30].
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Figure 2. Material flow and utilized production data for ball mill throughput prediction in the
Tropicana Gold mining complex.

The comminution circuit at Tropicana Gold mining complex comprises three stages:
crushing (primary and secondary crusher), grinding (high-pressure grinding roll, HPGR),
and milling (ball mill). The cyclone overflow is sent to the CIL plant to extract the gold. The
recorded average power draw of the ball mill and the particle size distributions entering
and leaving the ball mill are of particular interest for throughput prediction. Note that the
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feed and product particle size distributions are subsequently defined by their 80% passing
diameters in µm. The feed particle size measurements (F80) are performed using image
analyzers on the conveyor belt of the HPGR product. Shift composites of cyclone overflow
samples are used for product particle size measurements (P80).

The relevance of all presented measurements above can be derived from comminution
theory, such as Bond’s law of comminution [9,10]. The Bond equation (Equation (1))
calculates the specific energy of the ball mill (W in kWh/t) required to grind the ore from a
known feed size (F80) to a required product size (P80).

W = Wi ∗
(

10√
P80
− 10√

F80

)
(1)

The Work index (Wi in kWh/t) is a measure of the ore’s resistance to crushing and
grinding [9]. In this article, it is useful to substitute the specific energy of the ball mill
(energy delivered per ton of ore in kWh/t) by the quotient of mill power draw (kW) and
mill throughput (processed tons per operating hour), as shown in Equation (2).

Power
TPH

= Wi ∗
(

10√
P80
− 10√

F80

)
(2)

Equation (3) is obtained by rearranging Equation (2) for ball mill throughput (TPH).

TPH =
Power

Wi ∗
(

10√
P80
− 10√

F80

) (3)

Next to the measured power draw and particle size distributions, it is clear that
throughput predictions of the ball mill must include some kind of information about ore
hardness. Generally, the harder the material, the higher its resistance against comminution,
thus needing to reside longer in the ball mill to reach the desired product size, given con-
stant power draw and particle feed size. In Bond’s equation, TPH is inversely proportional
to Wi, as shown in Equation (4).

TPH ∝
1

Wi
(4)

As introduced above, the role of informing ore hardness is taken over by ROP mea-
surements in this article. By utilizing cost-effective and easily accessible production data
(MWD information generated by drilling machines), costly and time-consuming laboratory
tests spent for Wi estimates of the geological reserve can be replaced. Mwanga et al. [8]
report that the typical sample volume required for Bond tests is relatively large (2–10 kg,
depending on test modification), and requires crushed ore smaller than 3.35 mm (passing a
6-mesh sieve). Furthermore, several grinding cycles are necessary to reach the steady state
of the simulated closed circuit. The alternative utilization of ROP is especially promising as
a substitute for Wi because of its demonstrated ability to indicate rock type, strength, and
alteration [34,36–38]. In general, high ROP (in m/h) indicates less competent rock, bearing
lower Wi. In turn, TPH is expected to increase, as shown in Equation (5).

ROP
(m

h

)
↗ =⇒ Wi

(
kWh

t

)
↘ =⇒ TPH ↗ (5)

Note that the dependencies in Equation (5) may be nonlinear. Rather, potentially
nonlinear dependencies call for more sophisticated prediction models for TPH prediction,
which are subsequently discussed in Section 3.

3. Application of Supervised Machine Learning for Throughput Prediction

This section discusses the use of supervised machine learning to create a throughput-
prediction model at the Tropicana Gold mining complex. Supervised machine learning
models require labelled datasets for training, consisting of data pairs {xi, yi}, i = 1, . . . , N,
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whereas xi is a vector of predictor variables, and yi is the known response. In this article,
the known response (label) is the observed ball mill throughput, and the M predictor
variables (features) comprise of the geological attributes of the ore and measured variables
in the comminution circuit. Throughput responses are recorded on a continuous scale,
rendering the supervised learning problem a regression task (yi ∈ R ).

3.1. Neural Networks

A feed-forward neural network is chosen as a supervised learning model for the
potentially nonlinear task of ball mill throughput prediction. In its essence, feed-forward
neural networks are fully connected, layered combinations of neurons that find their
origins in the perceptron model [39]. A single neuron (perceptron) calculates the inner
product between its internal weight vector, wT , and the input vector, x. After adding a
bias term, b ∈ R, the resulting value is passed through a nonlinear activation function,
g( · ), creating a scalar output z = g

(
wT x + b

)
. Several connected neurons to x form the

so-called first hidden layer of the neural network. If the outputs of the first hidden layer
are passed through another layer of neurons, a multilayer neural network is built [40]. The
output layer comprises a single neuron that receives as input the vector of hidden outputs,
z and provides an estimate, ŷ ∈ R. Neural networks are the method of choice in this
article because they have the proven advantage of being capable of approximating every
arbitrary function using either one hidden layer of exponentially many neurons, or multiple
consecutive neural layers consisting of fewer neurons [41]. This gives neural networks
theoretical advantages over linear prediction models, such as multiple linear regression,
which has been tested in previous work for throughput prediction [30]. Univariate statistics
and correlations in the present dataset, including potential nonlinearities, are discussed
next, followed by the discussion of the utilized neural network architecture, and tuning of
its hyperparameters.

3.2. Dataset and Statistical Analysis

The dataset for throughput prediction contains the hardness-related rate of penetration
(ROP) of the ore, which has been tracked in the Tropicana Gold mining complex, as
presented in Figure 2. The power draw, F80, and P80 measurements, as well as a ball mill
utilization factor reflecting ball mill up- and down-time, are also included. A 7-day moving
average of the data is calculated for an observed time horizon of six months (February–
August 2018), which reduces noise in the dataset and helps recognize trends of higher and
lower throughput rates that are more likely connected to rock properties of the material
processed. In the six-month interval, extraction mainly occurs in two pits, the Tropicana
and Havana Pit, and material is continuously stockpiled at the ROM stockpiles. Univariate
statistics of the predictive variables and the response variable (throughput) are shown
in Table 1.

Table 1. Univariate statistics of predictive variables (features) and ball mill throughput (response).

Average
ROP (m/h)

Ball Mill
Power (kW)

Ball Mill
Utilization (%) P80 (µm) F80 (mm) Ball Mill

Throughput (t/op.h)

Minimum 35.0 9996 0.7 76.5 10.3 796.4

Mean 41.4 13,002 1.0 83.3 13.1 926.5

Maximum 53.6 13,435 1.0 93.2 15.0 1007.9

Std. Dev. 3.45 685.9 0.052 3.12 1.00 34.8

Coeff. of Var.
(CV) 0.083 0.053 0.053 0.037 0.077 0.038

Skewness 0.88 −3.01 −3.03 0.57 −0.36 −1.07

Kurtosis 1.20 9.26 9.30 0.94 −0.13 3.05

Count 181 181 181 176 153 181
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Table 2 shows linear correlations between pertinent features and observed TPH using
Pearson’s correlation coefficient, in Equation (6) below, with xi and yi representing individ-
ual sample points and x, y indicating sample means. Note that correlations in Table 2 can
be inflated because they are calculated after applying the moving average.

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∗

√
∑n

i=1(yi − y)2
(6)

Table 2. Pearson’s correlation coefficient between predictor variables (geological, comminution-related) and ball
mill throughput.

No. Category Feature Unit Pearson’s Correlation Coefficient
to Ball Mill Throughput

A1 Ore hardness using average
pen-rate values Average ROP (m/h) 0.44

B1 (Harder material) <26 m/h (%) −0.274

B2

Ore hardness expressed by
proportions of

penetration rate
intervals

26–29 m/h (%) −0.370
B3 29–32 m/h (%) −0.525
B4 32–35 m/h (%) −0.361
B5 35–38 m/h (%) −0.416
B6 38–42 m/h (%) −0.318
B7 42–46 m/h (%) 0.028
B8 46–53 m/h (%) 0.356
B9 53–62 m/h (%) 0.386

B10 (Softer Material) >62 m/h (%) 0.498

C1

Measurements in the
comminution circuit

Feed size F80 (mm) 0.046

C2 Product size P80 (µm) 0.063

C3 Power (kW) 0.382

C4 Mill Utilization (%) 0.374

The tracked ROP entries are henceforth used in two different ways to inform material
hardness. The feature ‘Average ROP’ comprises weighted averages of continuous ROP
values linked to the materials that are transported to the crusher in the same observed time
interval. In contrast, Both and Dimitrakopoulos [30] propose a compositional approach,
which partitions ROP into easier-to-drill (softer rock) and difficult-to-drill (harder rock)
categories, using a set of ROP intervals. The split in multiple intervals results in proportions
of harder or softer materials sent to the comminution circuit in a given time interval. A
detailed explanation of how to calculate these hardness proportions is given in Both and
Dimitrakopoulos [30]. The listed features in Table 2 can broadly be distinguished into
three categories, whereas the first two categories are related to ore hardness. Average
ROP comprises the first category (A1), and hardness proportions built by intervals of
penetration rates comprise the second category (B1–B10). The third feature category reflects
measurements at the comminution circuit (C1–C4).

By comparing the Pearson correlation coefficients in Table 2, it can be seen that
some variables correlate more strongly with TPH, whereas other variables do not. A
stronger positive correlation of TPH for ‘Average ROP’ (in m/h) gives the first evidence
of the usefulness of this feature (A1). The compositional approach effectively partitions
the distribution of penetration rates into multiple hardness categories. Here, a higher
percentage of difficult-to-penetrate material in the processed ore blend (B1–B6) indicates
harder material, thus lowering TPH, which is confirmed by the negative correlation in
Table 2. Conversely, a higher fraction of easier-to-penetrate material in the blend is expected
to increase TPH, which is equally confirmed in Table 2 through positive correlations of
categories B8–B10. Interestingly, some hardness categories show a stronger correlation



Minerals 2021, 11, 1257 8 of 19

(positive and negative) than the average ROP feature (A1). This indicates that additional
information may be conveyed through the creation of hardness categories. The prediction
potential of average penetration rates and hardness proportions is compared in detail
in Section 4.1.

According to Equation (5), the relationship between ball mill power and TPH is
directly proportional. This theoretical relationship is empirically well reflected in Table 2,
showing a stronger positive correlation between ball mill power (C3) and TPH. The power
measurements thus comprise an important part of throughput prediction, subsequently
performed in Section 4 of this article. Although the ball mill utilization (C4) is not part of
Bond’s equation, it is not surprising to see a stronger correlation to TPH. Events of planned
and unplanned ball mill downtime, i.e., utilization < 100 percent, ramp-up and ramp-down
processes, are among the effects that also lower the effective throughput per operating hour.
A redundancy between ball mill utilization and ball mill power is observed, confirmed by
similar statistics of power and utilization in Table 1, which explains similar correlation in
Table 2. Relationships between TPH and particle sizes of the ore that result from Bond’s
law (Equation (1)) are shown in Equations (7) and (8).

P80 ↗ =⇒ TPH ↗ (7)

F80 ↘ =⇒ TPH ↗ (8)

On the one hand, a coarser product particle size (larger P80 value) results in higher
TPH (Equation (7)), given that ore characteristics, energy input and feed particle size stay
the same. On the other hand, a finer-grained feed size (smaller F80 value) can also lead to an
increased TPH because less grinding work needs to be applied to reach the desired product
size (Equation (8)). In the present dataset, the particle size measurements (C1–C2) show
very little correlation in Table 2. This can be for several reasons. Contrary to power draw,
the relationships in Equations (7) and (8) are nonlinear, and the particle size measurements
are incomplete for some periods, as indicated in Table 1. Additionally, one must consider
that particle size measurements over running belts are error-prone, especially when using
image analyzers for F80. It is analyzed in Section 4 whether particle size measurements
can enhance throughput prediction in practice. Note that all comminution variables are
scaled before usage by dividing by their maximum value. Compositional data naturally
comprises fractional values in [0,1] and thus does not have to be scaled.

3.3. Network Architecture and Hyperparameter Search

In its implementation, the architecture of a feed-forward neural network requires
the calibration of several hyperparameters. The hyperparameter setting is relevant to
the evaluation process and robustness of the approach. Therefore, it becomes obvious
to explore the hyperparameter space in order to find a stable region of this space [42].
However, due to the small size of the dataset (181 data points) and the need to test on
the entire horizon (181 days) to extrapolate the overall performance of the proposed
approach, the dataset cannot be split. Instead, k-fold cross-validation is used to measure
the configuration quality, thus minimizing the information loss [43]. Different periods
are used for different folds (20 folds) to simulate the more realistic scenario where a
prediction is made over a new period. The network architecture is implemented in Python
using the scikit-learn package [44]. The squared error between the observed throughput,
yi, i = 1, . . . , N, and predicted throughput, ŷi, i = 1, . . . , N, is chosen as the loss function to
be minimized during training, and the rectified linear unit is chosen as activation function.
The quasi-Newtonian L-BFGS algorithm [45] is used to minimize the loss function, which
proved to converge more quickly on the small dataset compared to stochastic gradient
methods. Finally, the root-mean-squared error (RMSE) is used for comparisons.

Early stopping of training is important to prevent overfitting in neural networks,
and therefore, the number of training iterations is a hyperparameter that needs to be
calibrated [46]. It was found that the validation error was minimal after five iterations.
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L2 regularization was tested but did not significantly increase generalization potential in
this application.

Number of Layers and Neurons

Figure 3 shows a sensitivity analysis of the number of neurons for two selected feature
sets. In Figure 3a, only hardness-related features are used, whereas Figure 3b includes
more features. Given the stochastic processes involved during training, each network
configuration is repeated 20 times using random initializations of weights. This procedure
results in a sample of errors that are shown by boxplots.
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Figure 3. Comparison of the number of neurons for two selected feature sets: (a) hardness proportions and (b) hardness
proportions, ball mill power and product particle size (P80).

Figure 3 shows that the average error and error variance reduce for both feature sets as
the number of neurons increases. A plateau is reached at 25 to 30 neurons. This is expected
since a too small number of neurons is not able to adequately map the underlying function.
Note that this behavior can be observed independently of the number of layers. Two fully
connected hidden layers are used in Figure 3a, whereas a single connected hidden layer
was used for the sensitivity analysis in Figure 3b. For the best choice of layers, another
sensitivity analysis is performed by varying the number of hidden layers from one to four.
Figure 4 shows the results performed on the same selected feature sets.
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Figure 4. Comparison of the number of hidden layers for two selected feature sets: (a) hardness proportions and (b)
hardness proportions, ball mill power and product particle size (P80).

Figure 4 indicates that one hidden layer delivers the most stable results on all tested
feature sets. Although the addition of more layers can reduce the error in individual runs,
as seen in Figure 4a, the network appears more prone to overfitting and the error variance
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increases. For larger feature sets (Figure 4b), overfitting appears to be exacerbated the more
layers are used. The obtained results demonstrate the strength of parsimony of parameters
(POP), as the model with the smallest size (i.e., one hidden layer) performs best.

4. Results and Analysis

Section 4 is subdivided into two separate parts that aim to analyze the effects of
different feature sets on throughput prediction, and then benchmark the presented neu-
ral network against a multiple regression model. Section 4.1 addresses the prediction
of ball mill throughput using hardness-related variables only. In Section 4.2, pertinent
comminution variables are added individually, and their effect on throughput prediction
is evaluated.

4.1. Hardness-Related Variables (Effect of Non-Additivity)

This subsection aims to answer how different ways of informing about the hardness
and grindability of the geological reserve using penetration rates from blasthole drilling
perform for throughput prediction. Specifically, the prediction potential of the average rate
of penetration (ROP) is compared to the prediction behavior of hardness proportions cre-
ated using penetration rate intervals. Figure 5a shows a graphical comparison of ball mill
throughput (left axis) and average ROP of the processed ore (right axis). Figure 5b,c illus-
trates the evolution in time of two distinct hardness proportions compared to throughput,
and are discussed subsequently.

It can be seen in Figure 5a that average ROP follows ball mill throughput well in
many periods of the observed time horizon. Together with the strong positive correlation
reported in Table 2, the similar behavior of both variables in Figure 5a confirms the hy-
pothesis that penetration rates recorded by drilling machines can contribute to informing
the comminution performance and grindability of the processed ore. Next, this feature
is tested using 20-fold cross-validation. The performance of average ROP as a single
feature for throughput prediction is shown in Figure 6a (neural network) and Figure 6b
(multiple regression).

When comparing Figure 6a,b, there appears to be no obvious advantages of the neural
network compared to multiple regression, which can be explained by the fact that only one
single feature is used. Although following the general trends of throughput in most of the
observed time intervals, the results reveal weaknesses in predicting the right magnitudes
of low and high throughputs. A possible explanation for this weakness can be found
when considering penetration rates as a non-additive variable. Non-additivity is present if
linear averages of a variable, for instance penetration rates of two separate rock entities,
are different from the expected value of the combined (blended) sample. Thus, taking
mathematical averages can be detrimental to such variables. Other well-known examples
are metal recovery [47] and other variables representing product quality [48].

In fact, the feature ‘average ROP’ has gone through an averaging process twice.
First, penetration rates are averaged within a mining block when changing the support
from simulated grid nodes (point support) to mineable volumes (SMU) to reflect mine
selectivity. This standard process is only innocuous for additive variables such as metal
grades (at constant density). Second, a weighted average by tonnage of each truckload
is calculated per day, accounting for all sources of material that are blended. For the
alternative feature set of hardness proportions, penetration rates in point support are
split into several categories using penetration rate intervals. This procedure avoids the
averaging of harder and softer parts within the geological reserve. Instead, proportions of
softer and harder material are preserved in the ore blends that are processed in the mill
(compositional approach). A discussion of how to build hardness proportions and how
many hardness categories are needed can be found in Both and Dimitrakopoulos [30].

Figure 5b,c illustrates the evolution of two distinct hardness proportions compared
to TPH. Figure 5b shows the proportions of soft material arriving at the mill, informed
by the percentage of high penetration rates (greater than 62 m/h) in the ore blend. Here,
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higher throughputs are expected to occur when more of this soft material arrives at the mill.
Indeed, large proportions of softer material in Figure 5b coincide with high mill throughput,
which is most visible for days 1–10 as well as for days 170–181 of the observed period.
Figure 5c shows the proportions of harder material, which is reflected by penetration
rates that fall in the interval of 29 to 32 m/h. Larger proportions of this material category
should have a negative effect on throughput. Interestingly, Figure 5c shows that the
lowest mill throughput (days 128–133) coincides with the peaking of the fractions of harder
material. Conversely, the highest throughput is achieved when the proportions of this
harder-to-penetrate material are the smallest.
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Figure 5. Moving average of ball mill throughput compared to moving average of (a) average rate of
penetration (ROP), (b) proportions of softer material (high penetration rates in the interval >62 m/h),
and (c) proportions of harder material (low penetration rates falling in the interval of 29–32 m/h).
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The performance of hardness proportions for throughput prediction is shown in
Figure 6c (neural network) and Figure 6d (multiple regression). The highs and lows of
throughput are more closely predicted, leading to a reduction in the prediction error by
6.3% for both prediction models. This indicates that classification into hardness proportions
is advantageous over using a single, continuous hardness variable. The difference between
the neural network and the multiple regression model is relatively small.

4.2. Effect of Comminution Variables on Prediction

Several comminution variables were identified as potential candidates to improve
throughput prediction in Sections 2 and 3. In this subsection, the hardness feature set
comprising hardness categories is enhanced by one additional comminution variable at
a time. To analyze the effects of the neural network, a comparison to a multiple linear
regression model is provided for each experiment.

4.2.1. Ball Mill Power

The ball mill power measurements showed the potential to improve the prediction of
ball mill throughput due to its proportional relationship to TPH in Bond’s law (Equation (1))
and its strong correlation in the present dataset shown in Table 2. Figure 7a shows a
graphical comparison between the daily average power draw of the ball mill and TPH.
Power draw stays mostly constant for the observed time horizon, including some distinctive
drops in power in the second half of the observed time horizon. These power drops tend
to occur at times when the mill throughput decreases as well. It is thus not surprising
that adding ball mill power as a feature for throughput prediction especially enhances the
periods of sharp throughput decrease, as shown in Figure 8a.
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Figure 8. Ball mill throughput prediction (20-fold cross-validation) using as additional features:
(a) ball mill power (NN), (b) ball mill power (MLR), (c) feed particle sizes (NN), (d) feed particle
sizes (MLR) (e) product particle sizes (NN), (f) product particle sizes (MLR) (g) power and P80 (NN),
(h) power and P80 (MLR)–RSME is compared in brackets to respective model predictions (neural
network/multiple regression) using hardness features only.

By comparing the predictive performance of the neural network (NN) with the perfor-
mance of the multiple linear regression model (MLR) in Figure 8b, the superiority of the
neural network becomes apparent. MLR overestimates the influence of ball mill power,
seen in the sharp decrease in days 120–125. The neural network predicts closer to the
true throughput, which can be noticed visually and statistically. Compared to the sole
utilization of hardness proportions (Section 4.1), the RMSE decreases by 5.3% when using
the neural network, whereas the error for MLR rises by 1.5%.

4.2.2. Particle Sizes

Compared to ball mill power measurements, particle size measurements indicate a
low empirical correlation in the present dataset between particle sizes and TPH (Table 2).
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The theoretical relations to throughput (Equations (5), (8) and (9)) cannot be confirmed by
visual analysis in Figure 7b,c alone. The graphs also show a large amount of missing data,
especially for feed particle size (F80) measurements. No visible trends are recognizable.

By comparing the prediction behavior when adding particle sizes in Figure 8c–f, the
following conclusions may be drawn. Adding F80 measurements seems to not signifi-
cantly enhance throughput prediction in this case study since the RMSE decreases only
marginally when using the NN (−0.6%, Figure 8c) and increases when using MLR (+1.4%,
Figure 8d). The addition of product size measurements (P80) seems to have a positive
effect on throughput prediction in this case study, which is noticeable for both prediction
models. However, the NN prediction error (−6.5%) in Figure 8e reduces notably more
than the MLR prediction error (−3.0%) in Figure 8f, showing the superiority of the NN
when dealing with nonlinear features. The biggest gain in prediction accuracy can be
obtained when using both well-performing features, power draw and P80, together. Here,
the strengths of the neural network become most apparent, showing the lowest error in
Figure 8g and a 10.6% error reduction compared to ore hardness only. The MLR also shows
the lowest recorded error (−4.2%, Figure 8h), but the error decreases much less than the
NN. To summarize, the more features are added, the better their interdependencies can be
interpreted by NN.

5. Discussion

Next to the superior performance of hardness proportions combined with power
draw and product size measurements, the results obtained above show that the use of
neural networks can decrease the ball mill throughput-prediction error compared to using
multiple regression. Short-term decision making, such as short-term mine production
scheduling, can benefit from the demonstrated improvements in throughput prediction
presented in this article. A conventional short-term production schedule for the Tropicana
Gold mining complex is shown in Figure 9.
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Figure 9. Example of a monthly short-term production schedule in the Tropicana Gold mining complex.

As can be seen in Figure 9, short-term extraction can take place in multiple pits and
different mining areas within the pits in the same period of extraction, leading to blended
material streams at the processing plant(s). As a recent development in short-term mine
planning, the incorporation of a geometallurgical throughput-prediction model into short-
term production scheduling has been demonstrated in Both and Dimitrakopoulos [30].
Instead of building predefined throughput estimates per mining block, the authors predict
the ball mill throughput of blended materials using a multiple regression model, and
use these predictions for short-term production scheduling in a stochastic optimization
model. Figure 10 illustrates how the trained neural network in this article, together with
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comminution variables at the ball mill, can replace the multiple regression model for
production scheduling optimization.
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Figure 10. Comparison of models for ball mill throughput prediction and integration into short-term
production scheduling.

The stochastic constraint shown in Figure 10 ensures that for every period and simu-
lated orebody scenario, the scheduled ore tonnage equals the tonnage resulting from the
predicted hourly throughput and available mill hours. The deviation variables, d+,t,s and
d−,t,s, penalize deviations between the scheduled tonnage and realizable mill tonnage in the
objective function of the mathematical program, which is discussed in detail in Both and
Dimitrakopoulos [30]. The hardness proportions serving as input to the neural network
represent the weighted hardness proportions of the materials to be scheduled together in a
single short-term period. Furthermore, the planned power draw, as well as the planned
feed and product particle sizes for the future scheduled materials, can now serve as input
to the production scheduling optimization, since the neural network has been trained on
these attributes. Note that nonlinear production-scheduling formulations combined with a
metaheuristic solution method, such as simulated annealing, can handle these internal non-
linear computations in the optimization process, which have been developed for long-term
and short-term planning [31,49].

6. Conclusions

This article shows a case study at the Tropicana Gold mining complex that demon-
strates improvements of a geometallurgical throughput-prediction model using collected
production data in mines and processing plants, combined with supervised machine learn-
ing. The key improvements over a previous publication are: (i) including and testing the
influence of measurements in the comminution circuit that likely affect ball mill throughput
rates in a nonlinear way, (ii) utilizing a supervised learning model in the form of a neural
network to approximate nonlinear relationships between predictor and response variables,
and (iii) testing if compositional approaches can account for non-additive geometallurgical
variables better than average-type information. Finally, recommendations are given on
how to integrate the prediction model into short-term production scheduling.

Results show that adding ball mill power draw and product particle size measure-
ments can decrease the prediction error of throughput by 10.6% compared to throughput
prediction using geological hardness variables only. This result can only be achieved with
the trained neural network, whereas the linear regression model shows improvements
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of up to 4.2%. Available feed size measurements in the presented case study appear too
imprecise to positively affect the throughput prediction. A neural network structure of one
hidden layer comprising 30 neurons delivers the most stable predictions and shows the
lowest error variance. However, the advantages of the neural network are partly offset by
the more time-intensive hyperparameter search compared to the linear model, which is
easy to apply and shows comparative performance in some cases.

Finally, hardness proportions decrease the prediction error compared to the use of
averages of penetration rates. This underlines the importance of compositional approaches
for non-additive geometallurgical variables. A key takeaway is that the shown composi-
tional approach is not limited to ore hardness variables. Instead, it is conceivable to utilize
compositional approaches for other non-additive (geometallurgical) variables as well.

Future work aims to create more data-driven prediction models of metallurgical re-
sponses in mining complexes using production data generated in the mines and processing
plants. Next to the demonstrated prediction of comminution performance, the data-driven
prediction of metal recovery, consumption of reagents, and other revenue and cost factors
should be considered. The integration of these prediction models into decision-making pro-
cesses, such as short-term production scheduling, is pertinent for meeting key production
targets in mineral value chains.

Author Contributions: Conceptualization, C.B. and R.D.; methodology, C.B.; software, C.B.; vali-
dation, C.B. and R.D.; formal analysis, C.B.; investigation, C.B.; resources, R.D.; data curation, C.B.;
writing—original draft preparation, C.B.; writing—review and editing, C.B. and R.D.; visualization,
C.B.; supervision, R.D.; project administration, R.D.; funding acquisition, R.D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science and Engineering Research Council of
Canada (NSERC) CRD Grant CRDPJ 500414-16, NSERC Discovery Grant 239019, and the COSMO
mining industry consortium (AngloGold Ashanti, AngloAmerican, BHP, De Beers, IAMGOLD,
Kinross, Newmont Mining and Vale).

Acknowledgments: Special thanks are in order to AngloGold Ashanti Limited and the Tropicana
Gold Mine (AngloGold Ashanti Australia Ltd., 70% and manager, IGO Ltd., 30%), in particular Mark
Kent, Tom Wambeke, Aaron Caswell, Johan Viljoen and Louis Cloete for providing the data used in
this study and long-standing collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moradi Afrapoli, A.; Askari-Nasab, H. Mining Fleet Management Systems: A Review of Models and Algorithms. Int. J. Min.

Reclam. Environ. 2017, 33, 42–60. [CrossRef]
2. Rai, P.; Schunnesson, H.; Lindqvist, P.A.; Kumar, U. An Overview on Measurement-While-Drilling Technique and Its Scope in

Excavation Industry. J. Inst. Eng. Ser. D 2015, 96, 57–66. [CrossRef]
3. Lessard, J.; De Bakker, J.; McHugh, L. Development of Ore Sorting and Its Impact on Mineral Processing Economics. Miner. Eng.

2014, 65, 88–97. [CrossRef]
4. Williams, S.R. A Historical Perspective of the Application and Success of Geometallurgical Methodologies. In Proceedings of the

Second AusIMM International Geometallurgy Conference, Brisbane, Australia, 30 September—2 October 2013; AusIMM: Carlton,
Australia, 2013; pp. 37–47.

5. Dobby, G.; Bennett, C.; Kosick, G. Advances in SAG Circuit Design and Simulation Applied: The Mine Block Model. In
Proceedings of the International Autogenous and Semi-Autogenous Grinding Technology—SAG 2001, Vancouver, BC, Canada,
30 September—3 October 2001; Volume 4, pp. 221–234.

6. Bueno, M.; Foggiatto, B.; Lane, G. Geometallurgy Applied in Comminution to Minimize Design Risks. In Proceedings of the 6th
International Conference Autogenous and Semi-Autogenous Grinding and High Pressure Grinding Roll Technology, Vancouver,
BC, Canada, September 2015; University of British Columbia (UBC): Vancouver, BC, Canada, 2015; Volume 40, pp. 1–19.

7. McKay, N.; Vann, J.; Ware, W.; Morley, W.; Hodkiewicz, P. Strategic and Tactical Geometallurgy—A Systematic Process to Add
and Sustain Resource Value. In Proceedings of the Third AUSIMM International Geometallurgy Conference, Perth, Australia,
15–16 June 2016; AusIMM: Carlton, Australia; pp. 29–36.

8. Mwanga, A.; Rosenkranz, J.; Lamberg, P. Testing of Ore Comminution Behavior in the Geometallurgical Context—A Review.
Minerals 2015, 5, 276–297. [CrossRef]

9. Bond, F.C. The Third Theory of Comminution. Trans. AIME Min. Eng. 1952, 193, 484–494.

http://doi.org/10.1080/17480930.2017.1336607
http://doi.org/10.1007/s40033-014-0054-4
http://doi.org/10.1016/j.mineng.2014.05.019
http://doi.org/10.3390/min5020276


Minerals 2021, 11, 1257 18 of 19

10. Bond, F.C. Crushing & Grinding Calculations Part 1. Br. Chem. Eng. 1961, 6, 378–385.
11. Starkey, J.; Dobby, G. Application of the MinnovEX SAG Power Index at Five Canadian SAG Plants. Autogenous Semi Autogenous

Grind. 1996, 345–360.
12. Morrell, S. Predicting the Specific Energy of Autogenous and Semi-Autogenous Mills from Small Diameter Drill Core Samples.

Miner. Eng. 2004, 17, 447–451. [CrossRef]
13. Amelunxen, P.; Berrios, P.; Rodriguez, E. The SAG Grindability Index Test. Miner. Eng. 2014, 55, 42–51. [CrossRef]
14. Dominy, S.C.; O’Connor, L.; Parbhakar-Fox, A.; Glass, H.J.; Purevgerel, S. Geometallurgy—A Route to More Resilient Mine

Operations. Minerals 2018, 8, 560. [CrossRef]
15. Flores, L. Hardness Model and Reconciliation of Throughput Models to Plant Results at Minera Escondida Ltda., Chile. SGS

Miner. Serv. Tech. Bull. 2005, 5, 1–14.
16. Bulled, D.; Leriche, T.; Blake, M.; Thompson, J.; Wilkie, T. Improved Production Forecasting through Geometallurgical Modeling

at Iron Ore Company of Canada. In Proceedings of the 41st Annual Meeting of Canadian Mineral Processors, Ottawa, ON,
Canada, 20–22 January 2009; pp. 279–295.

17. Keeney, L.; Walters, S.G.; Kojovic, T. Geometallurgical Mapping and Modelling of Comminution Performance at the Cadia
East Porphyry Deposit. In Proceedings of the First AusIMM International Geometallurgy Conference, Brisbane, Australia,
5–7 September 2011; AusIMM: Carlton, Australia, 2011; pp. 5–7.

18. Alruiz, O.M.; Morrell, S.; Suazo, C.J.; Naranjo, A. A Novel Approach to the Geometallurgical Modelling of the Collahuasi
Grinding Circuit. Miner. Eng. 2009, 22, 1060–1067. [CrossRef]

19. Keeney, L.; Walters, S.G. A Methodology for Geometallurgical Mapping and Orebody Modelling. In Proceedings of the First
AusIMM International Geometallurgy Conference, Brisbane, Australia, 5–7 September 2011; AusIMM: Carlton, Australia,
2011; pp. 217–225.

20. Morales, N.; Seguel, S.; Cáceres, A.; Jélvez, E.; Alarcón, M. Incorporation of Geometallurgical Attributes and Geological
Uncertainty into Long-Term Open-Pit Mine Planning. Minerals 2019, 9, 108. [CrossRef]

21. Kumar, A.; Dimitrakopoulos, R. Application of Simultaneous Stochastic Optimization with Geometallurgical Decisions at a
Copper–Gold Mining Complex. Min. Technol. Trans. Inst. Min. Metall. 2019, 128, 88–105. [CrossRef]

22. Yan, D.; Eaton, R. Breakage Properties of Ore Blends. Miner. Eng. 1994, 7, 185–199. [CrossRef]
23. Amelunxen, P. The Application of the SAG Power Index to Ore Body Hardness Characterization for the Design and Optimization

of Autogenous Grinding Circuits. Master’s Thesis, McGill University, Montreal, QC, Canada, 2003.
24. Garrido, M.; Ortiz, J.M.; Villaseca, F.; Kracht, W.; Townley, B.; Miranda, R. Change of Support Using Non-Additive Variables with

Gibbs Sampler: Application to Metallurgical Recovery of Sulphide Ores. Comput. Geosci. 2019, 122, 68–76. [CrossRef]
25. Deutsch, J.L.; Palmer, K.; Deutsch, C.V.; Szymanski, J.; Etsell, T.H. Spatial Modeling of Geometallurgical Properties: Techniques

and a Case Study. Nat. Resour. Res. 2016, 25, 161–181. [CrossRef]
26. Deutsch, C.V. Geostatistical Modelling of Geometallurgical Variables—Problems and Solutions. In Proceedings of the Second

AusIMM International Geometallurgy Conference, Brisbane, Australia, 30 September–2 October 2013; AusIMM: Carlton, Australia,
2013; pp. 7–15.

27. van den Boogaart, K.G.; Konsulke, S.; Tolosana-Delgado, R. Non-Linear Geostatistics for Geometallurgical Optimisation. In
Proceedings of the Second AusIMM International Geometallurgy Conference, Brisbane, Australia, 30 September–2 October 2013;
AusIMM: Carlton, Australia, 2013; pp. 253–257.

28. Ortiz, J.M.; Kracht, W.; Pamparana, G.; Haas, J. Optimization of a SAG Mill Energy System: Integrating Rock Hardness, Solar
Irradiation, Climate Change, and Demand-Side Management. Math. Geosci. 2020, 52, 355–379. [CrossRef]

29. Kumar, A.; Dimitrakopoulos, R. Production Scheduling in Industrial Mining Complexes with Incoming New Information Using
Tree Search and Deep Reinforcement Learning. Appl. Soft Comput. 2021, 110, 107644. [CrossRef]

30. Both, C.; Dimitrakopoulos, R. Integrating Geometallurgical Ball Mill Throughput Predictions into Short-Term Stochastic Produc-
tion Scheduling in Mining Complexes. Int. J. Min. Sci. Technol. 2021, 1–37, accepted.

31. Goodfellow, R.C.; Dimitrakopoulos, R. Global Optimization of Open Pit Mining Complexes with Uncertainty. Appl. Soft. Comput.
J. 2016, 40, 292–304. [CrossRef]

32. Montiel, L.; Dimitrakopoulos, R. Optimizing Mining Complexes with Multiple Processing and Transportation Alternatives: An
Uncertainty-Based Approach. Eur. J. Oper. Res. 2015, 247, 166–178. [CrossRef]

33. Park, J.; Kim, K. Use of Drilling Performance to Improve Rock-Breakage Efficiencies: A Part of Mine-to-Mill Optimization Studies
in a Hard-Rock Mine. Int. J. Min. Sci. Technol. 2020, 30, 179–188. [CrossRef]

34. Vezhapparambu, V.; Eidsvik, J.; Ellefmo, S. Rock Classification Using Multivariate Analysis of Measurement While Drilling Data:
Towards a Better Sampling Strategy. Minerals 2018, 8, 384. [CrossRef]

35. Wambeke, T.; Elder, D.; Miller, A.; Benndorf, J.; Peattie, R. Real-Time Reconciliation of a Geometallurgical Model Based on Ball
Mill Performance Measurements—A Pilot Study at the Tropicana Gold Mine. Min. Technol. 2018, 127, 1–16. [CrossRef]

36. Horner, P.C.; Sherrell, F.W. The Application of Air-Flush Rotary Percussion Drilling Techniques in Site Investigation. Q. J. Eng.
Geol. 1977, 10, 207–220. [CrossRef]

37. Sugawara, J.; Yue, Z.; Tham, L.; Law, K.; Lee, C. Weathered Rock Characterization Using Drilling Parameters. Can. Geotech. J.
2003, 40, 661–668. [CrossRef]

http://doi.org/10.1016/j.mineng.2003.10.019
http://doi.org/10.1016/j.mineng.2013.08.012
http://doi.org/10.3390/min8120560
http://doi.org/10.1016/j.mineng.2009.03.017
http://doi.org/10.3390/min9020108
http://doi.org/10.1080/25726668.2019.1575053
http://doi.org/10.1016/0892-6875(94)90063-9
http://doi.org/10.1016/j.cageo.2018.10.002
http://doi.org/10.1007/s11053-015-9276-x
http://doi.org/10.1007/s11004-019-09816-6
http://doi.org/10.1016/j.asoc.2021.107644
http://doi.org/10.1016/j.asoc.2015.11.038
http://doi.org/10.1016/j.ejor.2015.05.002
http://doi.org/10.1016/j.ijmst.2019.12.021
http://doi.org/10.3390/min8090384
http://doi.org/10.1080/25726668.2018.1436957
http://doi.org/10.1144/GSL.QJEG.1977.010.03.04
http://doi.org/10.1139/t03-007


Minerals 2021, 11, 1257 19 of 19

38. Yue, Z.Q.; Lee, C.F.; Law, K.T.; Tham, L.G. Automatic Monitoring of Rotary-Percussive Drilling for Ground Characterization-
Illustrated by a Case Example in Hong Kong. Int. J. Rock Mech. Min. Sci. 2004, 41, 573–612. [CrossRef]

39. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65,
386–408. [CrossRef]

40. Hornik, K.; Stichcombe, M.; White, H. Multilayer Feedforward Networks. Neural Netw. 1989, 2, 359–366. [CrossRef]
41. Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
42. Bengio, Y.; Grandvalet, Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 2004, 5,

1089–1105. [CrossRef]
43. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Bayesian Forecast. Dyn. Model. 2009, 1, 1–694. [CrossRef]
44. Pedregosa, F.; Varoquaux, G.V.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Journal of Machine Learning Research: Preface. J. Mach. Learn. Res. 2011, 12, 2825–2830.
45. Liu, D.C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45,

503–528. [CrossRef]
46. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
47. Carrasco, P.; Chilès, J.-P.; Séguret, S. Additivity, Metallurgical Recovery, and Grade. In Proceedings of the 8th International

Geostatistics Congress; Santiago, Chile, 1–5 December 2008; p. 10.
48. Coward, S.; Vann, J.; Dunham, S.; Steward, M. The Primary-Response Framework for Geometallurgical Variables. In Proceedings

of the Seventh International Mining Geology Conference Proceedings, Perth, Australia, 17–19 August 2009; AusIMM: Carlton,
Australia, 2009; pp. 109–113.

49. Both, C.; Dimitrakopoulos, R. Joint Stochastic Short-Term Production Scheduling and Fleet Management Optimization for Mining
Complexes. Optim. Eng. 2020, 21, 1717–1743. [CrossRef]

http://doi.org/10.1016/j.ijrmms.2003.12.151
http://doi.org/10.1037/h0042519
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1016/0893-6080(91)90009-T
http://doi.org/10.1016/S0006-291X(03)00224-9
http://doi.org/10.1007/b94608
http://doi.org/10.1007/BF01589116
http://doi.org/10.1007/s11081-020-09495-x

	Introduction 
	The Tropicana Gold Mining Complex and Utilized Production Data for Ball Mill Throughput Prediction 
	Application of Supervised Machine Learning for Throughput Prediction 
	Neural Networks 
	Dataset and Statistical Analysis 
	Network Architecture and Hyperparameter Search 

	Results and Analysis 
	Hardness-Related Variables (Effect of Non-Additivity) 
	Effect of Comminution Variables on Prediction 
	Ball Mill Power 
	Particle Sizes 


	Discussion 
	Conclusions 
	References

