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An adaptive large neighborhood search heuristic to optimize 
mineral value chains under metal and material type uncertainty
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Trois-Rivières, Trois-Rivières, Quebec, Canada

ABSTRACT
This paper addresses the optimisation of mineral value chains under metal 
and material type uncertainty. A mathematical model to simultaneously 
optimise the extraction decisions and the destination decisions is pro-
posed. A fix-and-optimise scheme that exploits the structure of the pro-
blem and uses relaxation and decomposition techniques is introduced to 
obtain an initial solution, and an adaptive large neighbourhood search 
heuristic is developed to improve this solution. The proposed solution 
approach is tested on a real copper-gold mining complex. The results of 
these experiments show the ability of the proposed solution approach to 
efficiently address large instances of realistic size and provide schedules 
where the most valuable material is mined and processed early in the life 
of the mine and where the risk of not meeting production targets is 
successfully managed.
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1. Introduction

A mineral value chain includes and involves all aspects of a mining operation from extraction to ore 
processing and transportation, leading to refined minerals to be sold in the market. Simultaneous 
optimisation of all aspects of the mineral value chain overcomes the drawbacks of viewing the series 
of processes as occurring in a set of silos by providing a holistic view that accounts for the dynamic 
nature of relationships between and among the various parts of the chain. However, it entails 
solving a large and complex combinatorial optimisation problem. Accounting for the geological 
uncertainty inherent to mining operations makes the problem even more difficult to solve and thus 
presents substantial computational challenges, requiring approaches that, while not necessarily 
guaranteeing optimal solutions, can obtain good quality solutions in reasonable computing times.

In the last fifteen years, there has been a sustained development of such approaches and, 
concurrently, modelling frameworks, that incorporate aspects of mining operations with more 
details [1,2]. Early research focused on developing modelling frameworks that explicitly account for 
geological uncertainty in open-pit mine production scheduling, often considering a single-element 
deposit and one processor. Ramazan and Dimitrakopoulos [3] were the first to propose a two-stage 
stochastic framework that uses multiple equiprobable scenarios to account for geological uncer-
tainty. Small instances with up to 200 blocks were solved using the general-purpose solver CPLEX. 
The approach was later extended to handle multi-element deposits [4,5], multiple processors [6], 
and to optimise cut-off grade [7]. Because large instances of practical interest are beyond the scope 
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of general-purpose solvers, several studies have employed metaheuristics, such as simulated anneal-
ing [8–11], tabu search [12,13], variable neighbourhood search [14], ant colony optimisation [15], 
and genetic algorithms [16]. In recent research, it is increasingly common to consider hybrid 
methods that combine different heuristics or elements of different metaheuristics with other 
optimisation techniques to increase their efficiency. A hybrid method combining multi- 
neighbourhood simulated annealing with particle swarm optimisation was introduced in [17] and 
further studied in [18,19]. Methods that combine network flow techniques with (meta)heuristics 
were considered in [20–23], while hyper-heuristic approaches that combine elements from rein-
forcement learning and tabu search have recently been proposed in [24]. There is also some work 
where simulation is combined with different analysis tools to manage geological uncertainty and 
related risks [25,26].

While considerable progress has been made at the modelling and solving levels, there is still 
a need to devise enhanced algorithms that overcome the challenges of scale, complexity, and 
uncertainty in the optimisation of mineral value chains. Such an algorithm is what we propose in 
this paper. A novel solution approach based on the adaptive large neighbourhood search (ALNS) 
framework is introduced. This framework was initially proposed by Ropke and Pisinger [27] for 
vehicle routing problems. The approach consists of destroying a part of the current solution and 
reconstructing it in a different way in an attempt to improve it. To do so, several destroy and several 
repair methods are used. The heuristic keeps track of the performance of each method and adapts to 
the instance being solved by favouring methods that have performed well up to that point. The 
algorithm proposed in this paper integrates this classical framework with new destroy and repair 
methods specifically designed for the mining problem under study. Another new method is 
introduced to generate the initial solution to be improved by ALNS. This method, unlike the 
ones proposed in [13,17–24], exploits the structure of the problem and uses relaxation and 
decomposition techniques to efficiently generate a good quality solution. We show through a real 
case study, namely a copper-gold mining complex, that the proposed solution approach provides 
a powerful algorithmic framework to meet the inherent challenges of complexity, scale, and 
uncertainty in optimising mineral value chains.

The remainder of the paper is organised as follows: In Section 2, the mineral value chain studied 
in this paper is formally described, the approach used to deal with metal and material type 
uncertainty is outlined, and a mathematical formulation of the optimisation problem is introduced. 
The hybrid method used to generate the initial solution and the ALNS algorithm used to improve 
this solution are described in Sections 3 and 4, respectively. Computational results are reported and 
discussed in Section 5, followed by conclusions in Section 6.

2. Formal problem description and mathematical formulation

The mineral value chain considered in this paper consists of a single open-pit mine that feeds a set 
of processing facilities, henceforth referred to as destinations, that produce the final products to be 
sold (the refined minerals). An extracted block cannot be sent to just any destination. It can only go 
to a predetermined subset of destinations depending on the block’s material type (e.g. sulphides, 
oxides), which determines its admissibility for a given destination. Extracting blocks incurs mining 
costs, sending blocks to the destinations incurs transportation and/or processing costs, while the 
refined mineral processed through the different facilities is sold and generates revenues. The 
problem is to decide which blocks to extract and when to extract them, and where to send each 
extracted block so as to maximise the total discounted profit, while meeting the capacities and the 
specifications at each destination. Decisions are also shaped by the goal of meeting the physical and 
technical requirements for extracting the blocks (slope constraints).

The metal content of the blocks and their material type are not known with certainty at the 
time decisions are made but are interpolated using information obtained from exploration 
drilling. The material type has an impact on the tonnage of the blocks (W), the mining costs 

2 A. LAMGHARI AND R. DIMITRAKOPOULOS



(C), and the admissibility of the blocks to the different processing destinations (A). The metal 
content has an impact on the economic value (V) generated after processing the extracted 
blocks. The joint distribution of the stochastic parameters is assumed to be known. Let � ¼
W;C;A;Vð Þ be the random data vector and let � sð Þ denote one particular realisation of � (i.e. 

a scenario). It is assumed that there is a finite number of scenarios and that the scenarios are 
equiprobable.

The problem can be formulated as a two-stage stochastic program with recourse [28]. The 
following notation is used in the formulation:

(1) Sets

● N : Set of blocks considered for scheduling, N ¼ 1; . . . ;Nf g:
● P ið Þ: Set of immediate predecessors of block i; i.e. blocks that directly precede block i and have 

to be extracted to have access to i.
● T : Set of time periods over which blocks are being scheduled, T ¼ 1; . . . ;Tf g.
● D: Set of possible destinations for the blocks once extracted, D ¼ 1; . . . ;Df g:
● S: Set of scenarios, S ¼ 1; . . . ; Sf g:

(2) Indices and superscripts

● i; j: Block index, i; j 2 N :
● t; τ: Period index, t; τ 2 T .
● d: Destination index, d 2 D:
● s: Scenario index, s 2 S:

(3) Parameters

● wis: Tonnage of block i in scenario s:
● aids: 1 if block i is admissible for destination d in scenario s (i.e. if it can be processed in this 

destination given its material type in scenario s), 0 otherwise.
● Et : Minimum amount that should be extracted in period t (lower bound on mining).
● E: Maximum amount that should be extracted in period t (upper bound on mining or mining 

capacity).
● Ft

d: Minimum amount of material (flow) that should be sent to destination d in period t 
(demand at d).

● Ft
d: Maximum amount of material (flow) that should be sent to destination d in period t 

(processing capacity at d).
● cis: Cost of mining block i in scenario s:
● E ci½ �: Expected cost of mining block i. Recall that the scenarios are equiprobable. Hence 

E ci½ � ¼
1
S
P

s2S
cis.

● vids: Economic value to be generated if block i is processed at destination d in scenario s. This 
value is calculated as the return from selling the recovered metal minus the processing, the 
transportation, and any related costs.

● p� : Per-unit cost incurred for failing to meet the lower bound on mining.
● pþ: Per-unit cost incurred for not satisfying the mining capacity.
● qd

� : Per-unit cost incurred for failing to meet the demand at destination d.
● qd

þ: Per-unit cost incurred for exceeding the capacity of destinationd.
● δ1: Economic discount rate.
● δ2: Geological discount rate.
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(4) Variables

● xt
i : 1 if block i is extracted in period t; 0 otherwise.

● et�
s : Amount in shortage of extracted material in scenario s and period t.

● etþ
s : Amount of extra material extracted in scenario s and period t; i.e. amount above the upper 

bound Et .
● yt

ids: 1 if block i is sent to destination d in scenario s and period t; 0 otherwise.
● f t�

ds : Amount in shortage at destination d in scenario s and period t; i.e. amount of unsatisfied 
demand.

● f tþ
ds : Amount of extra material sent to destination d in scenario s and period t; i.e. amount 

above the capacity Ft
d.

Using the notation introduced above, the problem can be modelled as follows: 

max f xð Þ ¼ �
X

t2T

X

i2N

E ci½ �

1þ δ1ð Þ
t xt

i þ E Q x; �ð Þ½ � (1) 

s.t. 
X

t2T
xt

i � 1 "i 2 N (2) 

xt
i �
Xt

τ¼1
xτ

j � 0 "i 2 N ; j 2 P ið Þ; t 2 T (3) 

xt
i 2 0; 1f g "i 2 N ; t 2 T (4) 

where E Q x; �ð Þ½ � ¼ 1
S
P

s2S
Q x; � sð Þð Þ, and Q x; � sð Þð Þ is the optimal value of the following problem  

(second-stage problem): 

max
X

t2T

X

i2N

X

d2D

vids

1þ δ1ð Þ
t yt

ids (5a) 

�
X

t2T

p�

1þ δ2ð Þ
t et�

s (5b) 

�
X

t2T

pþ

1þ δ2ð Þ
t etþ

s (5c) 

�
X

t2T

X

d2D

q�d
1þ δ2ð Þ

t f t�
ds (5d) 

�
X

t2T

X

d2D

qþd
1þ δ2ð Þ

t f tþ
ds (5e) 

s.t. 
X

i2N

wisxt
i þ et�

s � Et "t 2 T (6) 
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X

i2N

wisxt
i � etþ

s � Et "t 2 T (7) 

xt
i ¼

X

d2D
yt

ids "i 2 N ; t 2 T (8) 

X

d2D
1 � aidsð Þyt

ids ¼ 0 "i 2 N ; t 2 T (9) 

X

i2
wisyt

ids þ f t�
ds � Ft

d "d 2 D; t 2 T (10) 

X

i2N

wisyt
ids � f tþ

ds � Ft
d "d 2 D; t 2 T (11) 

yt
ids 2 0; 1f g "i 2 N ; d 2 D; t 2 T (12) 

et�
s ; e

tþ
s ; f

t�
ds ; f

tþ
ds � 0 "d 2 D; t 2 T (13) 

The objective function (1) minimises the expected first-stage costs and maximises the 
expected second-stage profits. The expected first-stage costs are the expected discounted mining 
costs. The objective function (5) of the second-stage problem consists of five parts that represent the 
discounted economic value generated from processing the extracted blocks (5a), the penalties for 
extracting less material than the minimum required (5b), the penalties for exceeding the mining 
capacity (5 c), the penalties for the unsatisfied demand at the different destinations (5d), and the 
penalties for lost material occurred because of the insufficient capacity at the different destinations 
(5e). Note that the parameter δ2 used to calculate the penalty costs is the so-called geological risk 
discount introduced in [29] to define the importance given to satisfy the production targets over 
time; i.e. to encourage deferring the shortage/surplus to the last periods of the life of the mine in 
order to reduce the risk of not meeting the production targets in the first periods. Note also that, 
since a finite number of equiprobable scenarios are used to model the uncertainty, the objective 
function (1) can be expressed in an extended form as follows: 

maxf xð Þ¼�
X

t2T

X

i2N

E ci½ �

1þδ1ð Þ
tx

t
i

þ
1
S

X

s2S

X

t2T

X

i2N

X

d2D

vids

1þδ1ð Þ
ty

t
ids�

p�

1þδ2ð Þ
te

t�
s �

pþ

1þδ2ð Þ
te

tþ
s �

X

d2D

q�d
1þδ2ð Þ

tf
t�
ds �

X

d2D

qtþ
d

1þδ2ð Þ
tf

tþ
ds

( )

(14) 

Constraints (2) and (3) define the feasible set of the first-stage problem (reserve and slope 
constraints, respectively). They ensure that a block is extracted at most once (constraints (2)) and 
prevent a block from being extracted before its predecessors (constraints (3)). Constraints (6) and 
(7) are related to the minimal and maximal extraction levels at each period (mining constraints). 
Shortage, as well as surplus, is allowed, but incurs penalty costs. Constraints (8) and (9) link the 
extraction decisions to the destination decisions. More specifically, they allow a block to be sent to 
one and only one destination if the block is extracted (Constraints (8)), and if it is admissible to 
this destination (Constraints (9)). Constraints (10) and (11) are related to the amount processed 
in each destination at each period (processing constraints). If a shortfall occurs in a given 
destination at a given period, a penalty cost is applied. Similarly, if there is a surplus, a penalty 
cost is applied.
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The problem contains NT þ NTDS binary variables. Even a small mining complex with 10,000 
blocks and 4 destinations, to be scheduled over 5 years accounting for 10 metal and material type 
scenarios represents more than one million binary variables (1,050,000) and millions of constraints. 
A problem of this size is beyond the reach of exact methods and general-purpose solvers, so 
a heuristic approach is proposed in this paper to obtain a good quality solution in a reasonable 
amount of time. First, an initial solution is generated in the first phase of the solution procedure 
(initialisation phase), then this solution is improved in the second phase (improvement phase) 
using an adaptive large neighbourhood heuristic (ALNS). The methods used in the two phases of 
the solution procedure are described in the following sections.

3. Initialisation phase

The approach used to generate the initial solution takes advantage of the problem structure and uses 
a fix-and-optimise scheme to reasonably quickly provide a feasible solution to be improved with the 
ALNS heuristic in the second phase of the solution procedure. The basic idea is to divide the 
problem into a series of smaller, easier to-solve-sub-problems. Each sub-problem deals with 
a subset of variables, and when it is solved, these variables are fixed according to the solution 
obtained, and another sub-problem is considered to optimise another subset of variables. This is 
done as follows.

Using the general time-decomposition approach described in [14], the periods t 2 T are 
considered one at time in increasing order. In this paper, unlike in [14], each sub-problem 
associated with a period t includes two sub-problems: an extraction problem and a destination 
problem that are interrelated through constraints (8). These two problems are solved sequentially, 
which means that the set of blocks to be extracted in period t is first determined, then each of those 
blocks determined in the first step is assigned to one admissible destination in each scenario. This 
strategy not only prevents blocks not extracted in period t from being processed in period t, 
ensuring that constraints (8) are satisfied, but it also allows us to decompose the problem further 
to speed up the solution process. Indeed, because the scenarios are independent, the destination 
problem can be divided into S independent sub-problems, each associated with a scenario. This can 
be exploited to reduce the time required to solve the destination problem by solving the sub- 
problems associated with the scenarios in parallel. To summarise, starting with t ¼ 1, the extraction 
problem handles the extraction variables xt

i and the deviation variables et�
s and etþ

s . Afterwards, 
these variables are fixed according to the solution obtained, and the destination problem is solved to 
determine the destination variables yt

ids and the deviation variables f t�
ds and f tþ

ds , considering one 
scenario at time. This process is repeated until all periods are considered.

The approach described above is appealing since the problems to solve at each iteration involve 
many fewer binary variables than the original problem and thus can be solved efficiently. However, 
it gives rise to the following question: how can one optimise extraction decisions without explicitly 
modelling the destination decisions? One way to get around this difficulty is to relax the problem as 
explained in the next section.

3.1. Solving the extraction problem (EPt)

In what follows, t is fixed, and the extraction problem is denoted by EPt . Recall that this problem is 
solved to determine the set of blocks to be extracted in period t; which we will denote by Bt (initially 
Bt ¼ ;). If there are no restrictions on the amount of material processed at each destination; that is, 
if constraints (10) and (11) are dropped, then in an optimal solution, each extracted block will be 
sent to the most profitable destination. Hence, following this assumption, the variables yt

ids as well as 
the variables f t�

ds and f tþ
ds can be eliminated from the formulation, and the sub-problem associated 

with period treduces to: 
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max
X

i2Rt

E v�i
� �
� E ci½ �

1þ δ1ð Þ
t xt

i �
1
S

X

s2S

p�

1þ δ2ð Þ
t et�

s �
1
S

X

s2S

pþ

1þ δ2ð Þ
t etþ

s (15) 

s.t. 

xt
i � xt

j � 0 "i 2 Rt; j 2 P ið Þ \ Rt (16) 

X

i2Rt

wisxt
i þ et�

s � Et "s 2 S (17) 

X

i2Rt

wisxt
i � etþ

s � Et "s 2 S (18) 

xt
i 2 0; 1f g "i 2 Rt (19) 

et�
s ; e

t
sþ � 0 "s 2 S (20) 

where, Rt is the set of blocks not extracted at the beginning of period t (R1 ¼ N and 
Rt ¼ Rt� 1nBt� 1if t ¼ 2; . . . ;T), and E v�i

� �
¼ 1

S
P

s2S
vid� i;sð Þs represents the expected economic 

value to be generated if in each scenario s, block i is processed in the most profitable destination 
d� i:sð Þ ¼ argmaxd2A i;sð Þvids, A i; sð Þ being the set of destinations for which i is admissible in 
scenario s:

The objective function (15) maximises the expected net present value, assuming that under each 
scenario each extracted block is processed in the most profitable destination. It also minimises the 
expected penalty costs incurred whenever the amount extracted in period t does not fall within the 
specified limits Et;Et

� �
. Constraints (16) ensure that the slope constraints are satisfied, while 

constraints (17) and (18) are related to the mining levels. The reserve constraints are implicitly 
satisfied since the set Rt is updated as one goes along from one period to another 
(Rt ¼ Rt� 1nBt� 1). The same applies to the admissibility constraints because only one admissible 
destination is accounted for when calculating the E v�i

� �
’s.

Note that the proposed relaxation obtained by dropping constraints (10) and (11) does not 
provide a tight upper bound on the optimal value of the sub-problem associated with period t, but it 
allows us to account for the profit to be generated from processing the blocks without explicitly 
modelling the destination decisions, which considerably reduces the size of the problem to be 
solved. Indeed, the mixed-integer stochastic problem EPt((15)-(20)) involves Rtj j binary variables 
and 2S continuous variables as opposed to ( Rtj j þ Rtj jDSÞ binary variables and 2Sþ 2DSð Þ

continuous variables if one has to consider the destination decisions as well. This size is relatively 
small and thus EPt can be solved using a mixed-integer programming solver.

Because the extraction decisions will be modified in the improvement stage (i.e. when 
applying the ALNS heuristic), EPt does not need to be solved to optimality. In the numerical 
results presented in Section 5, an optimality tolerance of 1% is used; that is, the solution process 
stops if the solver can guarantee that the current best solution is within 1% of the global 
optimum.

3.2. Solving the destination problem (DPt)

Once EPt is solved using the method described in the previous section, the next step is to determine 
the destinations in which the blocks determined at the previous step are processed under each 
scenario. The way these destinations are determined is described in this section.
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Recall that t is fixed. If the extraction variables xt
i are fixed according to the solution obtained 

when solving EPt , the original sub-problem associated with period t reduces to the following 
problem: 

max
1
S

X

s2S

X

i2Bt

X

d2D

vids

1þ δ1ð Þ
t yt

ids �
1
S

X

s2S

X

d2D

q�d
1þ δ2ð Þ

t f t�
ds �

1
S

X

s2S

X

d2D

qþd
1þ δ2ð Þ

t f tþ
ds (21) 

s.t. 
X

d2D
yt

ids ¼ 1 "i 2 Bt; s 2 S (22) 

X

d2D
1 � aidsð Þyt

ids ¼ 0 "i 2 Bt; s 2 S (23) 

X

i2Bt

wisyt
ids þ f t�

ds � Ft
d "d 2 D; s 2 S (24) 

X

i2Bt

wisyt
ids � f tþ

ds � Ft
d "d 2 D; s 2 S (25) 

yt
ids 2 0; 1f g "i 2 Bt; d 2 D; s 2 S (26) 

f t�
ds ; f

tþ
ds � 0 "d 2 D; s 2 S (27) 

The objective function (21) maximises the total expected economic value to be generated from 
the blocks in Bt ; that is, those determined by solving EPt . It also minimises the expected penalty 
costs incurred whenever the amounts processed in the different destinations are below the demand 
Ft

d or exceed the capacity, Ft
d. Constraints (22) and (23) allow a block to be processed at only one 

destination and only if the block is admissible to this destination. Constraints (24) and (25) 
guarantee that the total amounts sent to each destination under each scenario are within the limits 

Ft
d; F

t
d

h i
; otherwise, penalty costs are incurred.

Since the scenarios are independent, the formulation (21)-(27) is scenario-separable, which 
means that the destinations can be determined independently for each scenario. In what follows, 
we denote by DPt

s the sub-problem associated with scenario s. The objective function of DPt
s has the 

following form: 

max
X

i2Bt

X

d2D

vids

1þ δ1ð Þ
t yt

ids �
X

d2D

q�d
1þ δ2ð Þ

t f t�
ds �

X

d2D

qþd
1þ δ2ð Þ

t f tþ
ds : (28) 

The method proposed to solve a given scenario sub-problem DPt
s consists of solving the linear 

relaxation of DPt
s; obtained by replacing the integrality constraints (26) by yt

ids 2 0; 1½ �, and then 
applying a repair heuristic to modify the so-obtained solution and generate a feasible destination 
plan. The linear relaxation of DPt

s can be solved efficiently as a minimum cost flow problem 
(MCFP). The MCFP is defined on a directed graph G ¼ V;Að Þ. The vertex set V ¼
Bt [ D [ D0 [ L; Ff g has four types of vertices:

● Bt : block vertices representing the blocks extracted in period t (i.e. those determined by 
solving EPt).
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● D: destination vertices representing the different destinations to which the blocks can be sent 
once extracted.

● D0: dummy destination vertices, which are copies of the destination vertices. These dummy 
vertices are used to absorb the amount in excess at each destination.

● L: a dummy supplier vertex used to provide the unsatisfied demands.
● F: a sink vertex.

The graph contains six types of arcs:

● Arcs that connect a block vertex i 2 Bt to a destination vertex d 2 D. The arc i; dð Þ is included 
in the set of arcs A only if i is admissible to d. The cost of this arc is set to � vids

1þδ1ð Þ
t , the lower 

bound is set to 0, and the upper bound is set to wis, the tonnage of block i in scenario s.
● Arcs that connect the dummy supplier vertex L to a destination vertex d 2 D: The flow on any 

such arc corresponds to the amount in shortage at destination d (the unsatisfied demand). 
Therefore, these arcs are uncapacitated and their per-unit cost flow is equal to q�d

1þδ2ð Þ
t .

● Arcs that connect a destination vertex d 2 D to its copy d 2 D0. The flow on the arcs d; d0ð Þ

denotes the total tonnage of material sent to destination d. The arcs d; d0ð Þ are also uncapa-
citated. They have zero costs and positive lower bounds equal to the demand of destination d 
in period t, Ft

d:
● Arcs that connect the dummy destination vertices d0 2 D0 to the sink F. Two arcs connect each 

vertex d0 to F. The lower and upper bounds on the first arc are equal to Ft
d and Ft

d, respectively, 
and the cost is equal to 0. The flow on the second arc denotes the excess in destination d and 

thus any such arc is uncapacitated and has a cost of qþd
1þδ2ð Þ

t .
● Finally, there is an arc that connects the dummy supplier vertex L to the sink vertex F. This arc 

is uncapacitated and its cost is set equal to 0.

Figure 1 illustrates the graph in a situation with one block i and one destination d to which i is 
admissible. The cost and the bounds of each arc are displayed above and below the arc, respectively.

Reformulating the problem as an MCFP allows us to quickly solve the linear relaxation of DPt
s. 

The so-obtained fractional solution is rounded using the following heuristic rule. Let z�id denote the 
flow on arc i; dð Þ in the optimal solution of the MCFP. If there exists a destination d such that 
z�id ¼ wis, then block i is assigned to this destination (i.e. yt

ids is set equal to 1). Otherwise, i is 

Figure 1. Graph in a situation with one block and one destination.
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assigned to destination d̂ ¼ argmaxd: i;dð Þ2Azid (i.e. yt
id̂s 

is set equal to 1). In both cases, the way the 
graph is constructed (arcs i; dð Þ exist only if i is admissible to d) guarantees that constraints (23) are 
satisfied and thus the destination plan is feasible.

4. Improvement phase

This phase applies an adaptive large neighbourhood search heuristic (ALNS) to improve the initial 
solution generated using the method described in the previous section. In what follows, the main 
features of ALNS are first described in a general context, then a step-by-step description of the 
proposed adaptation of ALNS is provided. For a discussion of the pros and cons of ALNS, the reader 
is referred to [27,30].

4.1. General ALNS framework

Because ALNS is an extension of the large neighbourhood search heuristic (LNS) proposed by Shaw 
[31], a brief description of LNS is first provided. Starting with an initial solution, LNS progressively 
improves it by using two methods: a destroy method and a repair method. More specifically, at each 
iteration, the destroy method removes a certain number of variables from the current solution x, 
returning an infeasible solution x� , and the repair method rebuilds the partial solution x� and 
returns a feasible solution, x0. This feasible solution x0 is either accepted as a new current solution or 
rejected according to some pre-specified rule. This can be, for example, the Metropolis acceptance 
rule of the simulated annealing method [32], by which if x0 is better than x, then x0 is accepted as the 
new current solution (i.e. the search resumes from x0); otherwise, x0 is accepted with some 
probability. LNS alternates between destroying and repairing the current solution until some 
stopping criterion is met. LNS can be seen as a neighbourhood search method where the neigh-
bourhood of the current solution is defined by the destroy and repair methods. Clearly, the larger 
the degree of destruction is (i.e. the destroy method removes a large number of variables), the larger 
the neighbourhood is (a large number of variables are modified at each iteration). To explore the 
large neighbourhood defined by the destroy and repair methods, LNS does not generate it entirely. 
It rather samples it.

ALNS is based on similar ideas as LNS, except that its uses several destroy and several repair 
methods within the search rather than using the same destroy/repair method at each iteration [27]. 
More precisely, a set of destroy and repair methods is considered. At a given iteration, the destroy/ 
repair method to be used is selected according to an adaptive probabilistic mechanism, which can 
be seen as a learning mechanism. ALNS associates with each destroy/repair method a weight. Each 
time a method is used, its performance is recorded. The weights are updated periodically based on 
these recorded performances. The weights thus measure how well each method has performed 
recently, the highest weights indicating methods that have recently been found successful for the 
instance being solved. A roulette-wheel mechanism is then used to bias selection towards these 
methods. ALNS has been shown to be very efficient for a large variety of difficult combinatorial 
problems such as vehicle routing, scheduling, and production problems [30,33–36], but, to the best 
of our knowledge, it has not been applied to solve mine planning problems.

4.2. Components of the proposed adaptation of ALNS

The main components of our adaptation of ALNS are described below. The description follows the 
framework outlined in the previous section and summarised in Algorithm 1.
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4.2.1. Destroy and repair methods
Fourteen destroy methods and seven repair methods, which are described in detail in appendices 
A and B, were developed for use in the ALNS framework. The destroy methods select a set of blocks 
to be removed from the current solution, whereas the repair methods select new periods and/or new 
destinations for these blocks. The destroy methods serve various purposes and are appropriate for 
different situations. Some are fit for diversification and choose the blocks randomly, for example, 
while others are fit for intensification and choose critical blocks. These may be blocks that are 
currently extracted in the period with the highest penalty cost or blocks that are sent to the waste 
dump instead of to a processor, where they can generate revenue. Other methods choose the blocks 
based on historical information either to drive the search towards unexplored regions of the feasible 
space or to avoid returning to already visited bad solutions or based on some relatedness measure to 
facilitate repairing the solution. The repair methods, on the other hand, include greedy heuristics, 
exact methods that reconstruct the destination plan for a given period from scratch, and variants of 
the MCFP method described in Section 3.2. Random fast methods are also used to avoid performing 
the same modifications to the solution repeatedly and thereby stagnating the search.
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4.2.2. Large neighbourhood
As mentioned in the previous section, at each iteration, a set of blocks, selected using a destroy 
method, are removed from the current solution and are then rescheduled in different periods and/ 
or sent to different destinations using a repair method. Let β be the number of blocks involved in 
these modifications. β is a parameter of the ALNS heuristic that has a significant impact on its 
efficiency. Clearly, a small value of β might not allow a thorough exploration of the search space, as 
the effect of a large neighbourhood is lost. On the other hand, a large value of β reduces ALNS to 
independent re-optimisation, in addition to being time-consuming. In this paper, the value of β 
varies during the search in the interval βmin; βmax

� �
, and it is increased or decreased according to the 

quality of the solutions recently obtained. More specifically, β is initially set to βmin. Every 20 
iterations, it is updated as follows: 

β ¼ min max 2
κ=10
� �

� 1
� �

β; βmin

� �

; βmax

� �

where κ is the number of improving solutions found during the last 20 iterations. Thus, if all 20 
previous solutions are non-improving, β is multiplied by 2; if they are all improving, β is divided by 
2; intermediate cases lead to smaller changes in the value of β; and in all cases, at least βmin blocks 
but no more that βmax blocks are removed from the current solution. By doing so, when improving 
solutions are found, fewer blocks are removed from the current solution (compared to the previous 
iteration), and thus few changes are made to the solution to intensify the search in the region of 
these improving solutions. When ALNS fails to improve the solution, larger changes are made to 
leave the current region and diversify the search. In this paper, the values of the parameters βmin and 
βmax are set to 0:001N and 0:3N, respectively (recall that N denotes the number of blocks being 
scheduled).

4.2.3. Adaptive search engine
As in [27] and many other implementations of ALNS, the selection of the destroy and repair 
methods to be applied at a given iteration is controlled by a roulette-wheel mechanism. The two 
methods are selected independently. Let ρ�d be the weight of destroy method d. d is selected with 
a probability ρ�dP

m2Ω�
ρ�m

. The probabilities for selecting the repair methods are calculated in a similar 

manner.

4.2.4. Adaptive weight adjustment
Without loss of generality, consider the case of the destroy methods d 2 Ω� (adjusting the weights 
associated with the repair methods is done in a similar manner). The values of the weights are 
initially set to 1 and are updated every 5 iterations using the following formula, which is similar to 
that used in [36]: 

ρ�d ¼
10ζ

Td=d 

where:

● ζ ¼ 1þ λ νd
μd

, μd and νd representing, respectively, the number of times that the method d has 
been used and the number of times this method has been able to improve the current solution. 
Clearly, the more a method d has been successful in improving the solution, the higher the 
value of νd

μd 
is. λ is a parameter defining the importance given to the methods that can improve 

the solution. With a high value of λ, the algorithm will tend to select methods that improve the 
solution, favouring intensification and reducing diversification. In this paper, the value of λ 
was set to 3.
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● Td=d ¼
Td
Td

, Td being the average computational time per iteration for method d and 
d ¼ argmind2Ω� Td is the method that requires the least amount of average computa-
tional time among all the methods in Ω� :

Thus, the weights are computed accounting not only for the efficiency of the methods to improve 
the solution but also for the time efficiency of these methods. Methods that can improve the 
solution in short computational times will be assigned higher weights and are thus more likely to 
be selected.

4.2.5. Acceptance criterion
At each iteration, x0, the solution resulting from applying the selected destroy and repair methods, is 
accepted or rejected according to the simulated annealing (SA) criterion. Let Δf ¼ f x0ð Þ � f xð Þ be 
the difference between the value of the new solution x0 and the value of the current solution x. x0
replaces x as the current solution if it is better than x (i.e. if Δf > 0). If Δf � 0, x0 replaces x with 

probability e
Δf
Tf . The temperature factor Tf is initially set to a value T0

f and is multiplied every 
iteration by the cooling factor 0< c< 1 to decrease its value. The values of the parameters T0

f and c 
used in the numerical experiments are set to 0.3 and 0.995, respectively.

4.2.6. Stopping criterion
The stopping criterion is specified in terms of a maximum number of consecutive iterations maxIter 
without an improvement of the objective function value. In the numerical results presented in 
Section 5, the value maxIter ¼ 100 was used.

5. Numerical results

The solution approach proposed in this paper is tested on a real copper-gold mining complex where 
175,598 blocks are considered for scheduling over 22 years. A set of 40 equiprobable scenarios is 
used to model the uncertainty in copper, gold, tonnages, and material types. These scenarios were 
generated from the available drilling data using the geostatistical sequential simulation framework 
[37–39] and the direct block simulation method for multiple correlated variables [40].

There are three main material groups: sulphides, transition, and oxides, and, to respect the 
chemistry requirements, each group is further separated into two sub-groups, for a total of six 

Table 1. Parameters used to define the right-hand side of constraints (6), (7), (10), and (11).

Parameter Value

Lower bound on mining (Et) 0
Upper bound on mining (Et) 25 million tonnes
Lower bound on processing or demand at destination d (Ftd) 

Sulphide Mill (SM) for the first 10 years 
Sulphide Mill (SM) for years 11 to 22 
Sulphide Heap Leach (SHL) for the first 10 years 
Sulphide Mill (SM) for years 11 to 22 
Sulphide Dump Leach (SDL) 
Transition Heap Leach (THL) 
Oxide Heap Leach (OHL) 
Oxide Waste (OW)

2.9 million tonnes 
0 

7.8 million tonnes 
0 
0 
0 
0 
0

Upper bound on processing or capacity of destination d(Ftd) 
Sulphide Mill (SM) 
Sulphide Heap Leach (SHL) 
Sulphide Dump Leach (SDL) 
Transition Heap Leach (THL) 
Oxide Heap Leach (OHL) 
Oxide Waste (OW)

3 million tonnes 
8 million tonnes 

Unlimited 
Unlimited 
Unlimited 
Unlimited
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material types, with the sulphide and transition material groups separated into two different 
material types based on being above or below 0.2% copper, and the oxide materials classified as 
ore or waste depending on chemistry. There are also six destinations: a sulphide mill (SM), 
a sulphide heap leach (SHL), a sulphide dump leach (SDL), a transition heap leach (THL), an 
oxide heap leach (OHL), and an oxide waste (OW). The sulphide mill only accepts sulphide 
materials and produces both copper and gold. The sulphide heap leach produces only copper, 
but it accepts both sulphide and transition materials. Moreover, it can only process the materials 
above 0.2% copper, hence the creation of distinct material types around this grade. Like the sulphide 
heap leach, the sulphide dump leach can also extract only copper and accepts both sulphide and 
transition materials. The difference between the sulphide heap leach and the sulphide dump leach is 
that the latter is essentially a waste dump where excess sulphide and transition materials go for 
leaching, regardless of whether or not it is profitable to treat the material. The transition and oxide 
heap leaches accept only transition or oxide materials, respectively, and both produce only gold. 
The oxide waste accepts both oxide materials, but it does not treat any of the material and hence 
produces neither copper nor gold.

Table 1 shows the parameters used to define the right-hand side of constraints (6), (7), (10), and 
(11), while Table 2 summarises the economic parameters used to compute the coefficients of the 
objective function (14). For confidentiality purposes, the mining and processing costs are expressed 
relative to a base cost ‘k’ to give an idea of the order of magnitude of costs for the various processes. 
To set the penalty costs, a preliminary analysis, similar to that discussed in [4,17], was conducted.

As noted previously, in this case study, 175,598 blocks are considered for scheduling over 
22 years. A 45-degree slope angle is considered to define the precedence constraints, and 40 

Table 2. Economic parameters to compute the objective function coefficients.

Parameter Value

Mining cost ($/t) 1
Sulphide Mill (SM) 

Processing cost ($/t) 
Recovery Cu 
Recovery Au

11.30 
0.93 
0.59

Sulphide Heap Leach (SHL) 
Processing cost ($/t) 
Recovery Cu 
Recovery Au

2.98 
0.7 
0

Sulphide Dump Leach (SDL) 
Processing cost ($/t) 
Recovery Cu 
Recovery Au

1.87 
0.4 
0

Transition Heap Leach (THL) 
Processing cost ($/t) 
Recovery Cu 
Recovery Au

2.15 
0 

0.5

Oxide Heap Leach (OHL) 
Processing cost ($/t) 
Recovery Cu 
Recovery Au

2.06 
0 

0.55

Copper price, including selling and G&A costs ($/lb Cu recovered) 2.88
Gold price, including selling and G&A costs ($/oz Au recovered) 1480
Undiscounted cost for failing to meet the lower bound on mining ($/t) 10
Undiscounted cost for not satisfying the mining capacity ($/t) 10
Undiscounted cost for failing to meet the demand at destination d($/t) 25 if d ¼ SM, 10 otherwise
Undiscounted cost for exceeding the capacity of destination d($/t) 25 if d ¼ SM, 10 otherwise
Discount rate (δ1) 10%
Risk discount rate (δ2) 7%
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simulations are used to model the uncertainty in copper, gold, tonnages, and material types. The 
corresponding two-stage stochastic model ((1)-(13)) contains more than 931 million binary vari-
ables and millions of constraints. CPLEX was not able to solve even the linear relaxation of the 
problem within four weeks. The heuristic-based solution approach described in this paper required 
significantly less time, namely 3678.03 minutes. The results obtained are presented below. Figure 2 
shows the risk profiles (10th, 50th, and 90th percentiles denoted by P10, P50, and P90, respectively) 
for the yearly tonnages processed at each destination, while Figures 3 ,4 and show the risk profiles 
for the cumulative NPV and sample cross-sections of the physical schedule obtained, respectively.

The following observations can be made from the graphs in Figure 2. The sulphide mill, which is 
limited to processing three million tonnes per year, is used at full capacity during the first 10 years. 
The amount processed in this destination drops after that, and a very small amount of material is 
treated towards the end of the life of the mine, when the risk is higher. The differences between the 
P10, P50 and P90 curves are negligible for the first 10 periods, indicating that, given the simulations 
used, there is a very small risk of not providing enough material to fill the sulphide mill capacity. 
The same observations apply to the sulphide heap leach. This processor (SHL) has an eight million 
tonnes per year capacity, which is fully utilised, as the SHL consistently receives this amount except 
in the last three periods. The risk of not meeting the production targets is higher towards the end of 
the life of the mine. Regarding the sulphide dump leach, one can observe that there are more 
fluctuations in this processor compared to the two previous ones. This is due to the fact that this 
processor has an unlimited capacity and accepts sulphide and transition materials. As noted earlier 
in this section, the sulphide dump leach is essentially a waste dump where excess sulphide and 
transition materials go for leaching. Hence, surplus low-grade material is treated in this processor. 
The transition heap leach has also an unlimited capacity. The amounts processed in this destination 
range between 4 and 9 million tonnes and the risk increases towards the end of the life of the mine, 
as can be seen from the more pronounced differences between the P10, P50 and P90 curves. The risk 
profiles for the oxide waste show that the tonnage of waste is higher in the last periods than it is in 
the first periods, as the extraction of non-profitable blocks is delayed. Less than one million tonnes 
of waste is mined during the first 10 periods. Figure 3, which shows the risk profiles for the 
cumulative NPV, indicates that the first six periods account for 80% of the total NPV. This is due 
to the fact that the most valuable material is extracted and processed early in the life of the mine, as 
can be seen from the graphs in Figure 2.

In sum, it is apparent from the results discussed above that the proposed solution approach can 
not only address large instances of realistic size and handle the complexity of simultaneously 
optimising extraction and destination decisions while accounting for both metal and material 
type uncertainty, but it can also provide very good quality solutions; that is, schedules where the 

Figure 3. Risk analysis for cumulative discounted cash flows. The dotted lines represent P10 and P90, while the solid line 
represents P50.
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most valuable material is extracted and processed early in the life of the mine, where processing 
capacities are fully utilised in most periods, and more importantly, where the tonnage profiles are 
quite consistant across the scenarios, indicating that the risk of not meeting production targets is 
managed.

8. Conclusions

This paper introduces 1) a new mathematical model for optimising mineral value chains under 
uncertainty; 2) a new method to generate an initial solution; and 3) a new method to improve the 
initial solution. The model is a two-stage stochastic model that integrates metal and material type 
uncertainty and simultaneously optimises extraction and destination decisions. The first new 
method exploits the structure of the problem, using relaxation and decomposition techniques. 
The second new method is based on the adaptive large neighbourhood search framework (ALNS). 
It uses fourteen destroy methods and seven repair methods that are suited for the problem 
addressed in the paper to ensure both intensification and diversification.

The proposed solution approach was tested on a real copper-gold mining complex with six 
material types and six destinations. The results of the numerical experiments indicate the ability of 
the proposed approach to efficiently address large instances with almost one billion binary variables 
and provide schedules where the most valuable material is extracted and processed early in the life 
of the mine and where the risk of not meeting production targets is successfully managed.

Although the proposed mathematical model and solution approach consider a single mine, they 
can be easily extended to address the case of mineral value chains comprised of multiple mines. Both 
the model and the solution approach can also be adapted to address the more general mineral value 
chain, where the first destinations are not the last destinations. Future work will follow these 
directions. It would also be interesting to examine if the performance of ALNS is affected by the 
quality of the initial solution. To this end, the method used in the initialisation phase must be 
replaced by an alternative method to generate several different initial solutions. Finally, another 
important research direction could be to develop alternative improvement methods for the problem 
addressed in the paper and compare them to the ALNS method. Such methods could include 
a greedy randomised adaptive search procedure (GRASP) or other metaheuristics from the literature.
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Annex A. Destroy methods
The 14 destroy methods used to select the β blocks to be removed from the current solution, x, are described below. 
Unless otherwise specified, all destroy methods follow the general scheme summarised in Algorithm 2 and select 
blocks based on priority rules. More precisely, an index pi, henceforth referred to as a priority value, is first calculated 
for each block i using information derived from the current solution and/or from the history of the search. Blocks are 
then ranked in ascending or descending order of pi, and the β first blocks are selected. The way the priority values pi 
are computed differs from one method to another. Before describing how each method compute the pi values and 
how it ranks the blocks, some extra notation is introduced.
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Let αis ¼
P

d2D
aids be the number of destinations to which block i can be sent without violating the admissibility 

constraints (recall that aids ¼ 1 if block i is admissible for destination d under scenario s and 0 otherwise). Given the 
current solution x, denote by:
● ti xð Þ: the period in which block i is extracted in solution x:
● Ei xð Þ ¼ max

j2P ið Þ
tj xð Þ : the earliest period in which block i can be extracted without violating the slope constraints 

(recall that P ið Þ denotes the set of immediate predecessors of block i).
● Li xð Þ ¼ min

j2S ið Þ
tj xð Þ : the latest period in which block i can be extracted without violating the slope constraints 

(S ið Þ denotes the set of immediate successors of block i).
● Mt

s xð Þ ¼
P

i2N
wisxt

i : the total tonnage, under scenario s; of blocks extracted in period t in solution x:

● Pt
ds xð Þ ¼

P

i2N
wisyt

ids : the total tonnage, under scenario s; of blocks processed at destination dduring period t in 

solution x:

In what follows, in order to simplify the notation, the dependence on x will be omitted whenever there is no risk of 
ambiguity; that is, ti will be used instead of ti xð Þ and so on.

A.1. Random picker (D1)
The main purpose of this method is to diversify the search. It simply selects at random β blocks from the current 
solution x to alleviate the risk of choosing the same blocks many times. This can be seen as associating with each block 
a random integer value pi chosen between 1 and N and ranking the blocks in ascending order of pi (recall that N 
denotes the number of blocks being scheduled).

A.2. Historical frequency (D2)
This method uses historical information to select the blocks. It relies on a frequency array F ¼ ðF iÞ where each entry 
F i is associated with a block i. This frequency array keeps track of the number of times that each block i has been 
involved in destroying the solution since the beginning of the search process; that is, the F i values are initially set to 0, 
and whenever the block i is selected by a destroy method, then the value of the entry F i is incremented. The priority 
values of the blocks are calculated as pi ¼ F i, and the blocks are ranked in ascending order of pi. Thus, this method 
selects the blocks less frequently chosen so far in order to diversify the search.

A.3. Historical best (D3)
This method is also based on historical information, but it additionally uses the value of the current solution, f xð Þ. It 
aims to select the blocks that seem to be sent to the wrong destinations in the current solution with regard to the best- 
known solutions. More precisely, let X it be the set of solutions found so far in which block i is extracted in period t. 
We define an N � T matrix Z. The value Zit of entry i; tð Þ in this matrix corresponds to the value of the best solution 
in the set X it (i.e. Zit ¼ max

sol2X it
f solð Þ). All Zit values are initially set to a large negative value, and they are updated each 

time a new solution is found. Recall that ti denotes the period in which block i is extracted in the current solution. The 
priority value of block i is calculated as pi ¼ Ziti � f xð Þ . Hence, a positive value of pi means that in one of the 
solutions found in the past solð Þ, block i is extracted in the period as it is in the current solution (x); however, the value 
of sol is better than the value of x. This might be because in the current solution i is sent to the wrong destinations, and 
thus removing it from these destinations might result in an improvement. The blocks are ranked in descending order 
of pi to favour the blocks that present the largest deviations Ziti � f xð Þ.

A.4. Greedy picker (D4)
This method selects the costliest blocks in the current solution in an attempt to extract them in other periods where 
they will generate more profit and/or send them to better destinations. Identifying these blocks reduces to identifying 
blocks whose removal increases the value of the objective function the most. Let f x � if gð Þ denote the value of the 
current solution x if block i is removed from the schedule. The priority value of i is calculated as the difference 
between this value and the value of the current solution; i.e. pi ¼ f x � if gð Þ � f xð Þ. The blocks are ranked in 
decreasing order of pi.

A.5. Period mobility (D5)
This method selects the blocks that can be extracted in other periods without violating the slope constraints, for it is 
easier to modify the period in which these blocks are extracted and thus create new feasible solutions different from 
the current one. Moreover, when selecting such blocks, we take care to favour blocks whose removal does not increase 
the mining shortage cost (third term of the objective function (14)). Let 2 be a small value ( 2 = 0.0001 in the 
numerical results presented in Section 5). The priority value of block i is calculated as follows: 
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pi ¼
Li � Ei

P
s max 2; Eti � Mti

s � wis
� �� � :

Note that the numerator Li � Eið Þrepresents the number of periods in which block i can be extracted in the current 
solution without violating the slope constraints, while the denominator ð

P
s max 2; Eti � Mti

s � wis
� �� �

Þ is equal to 
a small value if removing i from its current period ti does not incur a mining shortage in ti under any scenario, and it 
is equal to the total shortage amount considering all scenarios otherwise. Hence, a block with a high value of pi has 
more feasible reinsertion possibilities (in terms of periods of extraction) and is less likely to incur a mining shortage if 
removed from its current period. For this reason, the blocks are ranked in descending order of pi.

A.6. Destination mobility (D6)
This method has the same objective as the previous one; that is, to select blocks that can lead to a new feasible solution 
different from the current one. However, the blocks are ranked by the number of destinations to which they can be 
sent rather than the number of periods in which they can be extracted. Recall that αis ¼

P

d2D
aids represents the 

number of admissible destinations for block i in scenario s. The priority values are calculated using the formula 
below, and the blocks are ranked in descending order of these values: 

pi ¼

P

s2S
αis if i is extracted in the current solution i:e:; if

P

t2T
xit ¼ 1

� �

;

0; otherwise:

8
<

:

Clearly, an unmined block cannot be sent to any destination, and thus if selected, one cannot modify its 
destination and get a new solution different from the current one. This is why unmined blocks are given less priority 
(the corresponding pi values are set to 0 to avoid selecting them).

A.7. Combined mobility (D7)
This method combines the two previous ones (Period mobility and Destination mobility). It accounts not only for the 
periods in which each block can be extracted, but also for the destinations to which the block can be sent. More 
precisely, the priority values are computed using the following formula: 

pi ¼

P

s2n
αis � 1ð Þ þ

PLi

t¼Ei ;t�ti

P

s2n
αisif

P

t2n
xit ¼ 1;

0 otherwise:

8
<

:

The term (
P

s2S
αis � 1ð Þ) accounts for the number of destinations to which block i can be sent if its period of 

extraction is not modified (its current destination under each scenario does not contribute to this term), while the 

term (
PLi

t¼Ei ;t�ti

P

s2S
αis) considers the other periods to which the block can be moved while satisfying the slope 

constraints. The blocks are ranked in descending order of pi to select those with many feasible reinsertion 

possibilities.

A.8. Predecessor relatedness (D8)
This method has the same objective as the last three ones: create new feasible solutions different from the current one. 
However, it does not rely on the number of feasible reinsertion possibilities of each block nor does it follow the 
general scheme outlined in Algorithm 2. It selects blocks along with their predecessors extracted in the same period, 
as this should allow modifying their period of extraction and create a new feasible solution (more specifically, advance 
their extraction together which will ensure the satisfaction of the slope constraints). This is done in three steps. In the 
first step, a random integer value τ is chosen between 1 and T (recall that T is the number of periods over which the 
blocks are being scheduled). Then, τ periods are selected at random. The priority values are not calculated for all 
blocks but only for blocks extracted in one of these τ periods. Let t be such a period and i be a block extracted in t. 
Denote by γi the number of blocks in the inverted cone formed by i and its predecessors extracted in t. Recall that β 
blocks should be selected. We set pi ¼ γi �

β
τ

�
�
�

�
�
� and among the blocks currently extracted in t, the block with the 

smallest value of pi is selected, as well as its predecessors extracted in t. Ties are broken up randomly. This process is 
repeated for each of the τ periods.
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A.9. Successor relatedness (D9)
This method is similar to the previous one except that it selects blocks along with their successors. Apart from the fact 
that γi represents the number of blocks in the cone formed by i and its successors extracted in the same period, the 
procedure to select the blocks is identical to the procedure described in the previous section (A.8).

A.10. Mining reduction (D10)
The objective of this method is to select blocks whose removal can reduce the mining surplus (i.e. decrease the value 
of the fourth term of the objective function) or reduce the tightness of the mining capacity constraints to make room 
for new blocks. The priority values are computed as follows: 

pi ¼
min 1; Li� ið Þmax

s2n
nti

s

Eti
if
P

t2n
xit ¼ 1;

0 otherwise:

(

The blocks are ranked in descending order ofpi. Note that if an extracted block icannot be moved to another 
period (t�ti) without violating the slope constraints (i.e. if 

P

t2T
xit ¼ 1 and Ei ¼ Li ¼ ti), then the corresponding 

priority value piis equal to 0 to avoid selecting it. This is done to make it easy for the repair method to create new 
feasible solutions. The priority value of a block that is not extracted in the current solution (i.e. such that 

P

t2T
xit ¼ 0) 

is also set to pi ¼ 0 to avoid selecting it, as such blocks are not extracted and thus have no influence on the mining 
capacity constraints (changing their periods does not affect the fourth term of the objective function (14)).

A.11. Processing reduction (D11)
This method is based on similar ideas as the previous one and aims to reduce the amount of surplus at the different 
destinations and/or the tightness of the processing capacity constraints. To be more precise, recall that Pt

ds denotes 
the total tonnage of blocks processed at destination d during period t under scenario s in the current solution, and 
that Ft

d is the processing capacity at d during t. Denote by σis ¼ min 1; αis � 1ð Þ þ αis Li � Eið Þð Þ the number of 
feasible reinsertion possibilities for block i under scenario s. Thus, if block i cannot be moved to another period (i.e. if 
Ei ¼ Li ¼ ti), and if it can be sent to only one destination under scenario s (i.e. and if αis ¼ 1), then σis ¼ 0. 
Otherwise, σis � 1. The priority values pi are calculated using the formula below, and the blocks are ranked in 
descending order of pi: 

pi ¼
maxs2S σis

nti
ds

Fti
d

� �

if
P

t2T
xit ¼ 1;

0 otherwise:

8
<

:

Note that the way the pi’s are defined implies that the blocks that are not extracted in the current solution, as well 
as the blocks that are extracted but can neither be moved to a different period nor sent to another destination for all 
scenarios, have the lowest priority values (0) to avoid selecting them. As for the previous method, the idea is to 
prevent getting a solution similar to the current one when applying the repair method.

A.12. Shortage cautious (D12)
The purpose of this method is to find blocks that can be sent to destinations more profitable than their current 
destinations without incurring a shortage in their current destination. Denote by c the destination to which block i is 
sent under scenario s in the current solution. Let d� be the best destination to which block i can be sent under scenario 
s; i.e. d� ¼ argmaxd2Dvids(recall that vids represents the economic value to be generated if block i is processed at 
destination d in scenario s. This value is calculated as the return from selling the recovered metal minus the 
processing, transportation, and selling costs. vids is set to a large negative value if i is not admissible for destination 
d under scenario s). Again, let 2 be a small positive value, and let C be a large positive value. Recall that δ1 is the 
economic discount rate. The priority values are computed using the following formula, and the blocks are ranked in 
descending order of the priority values: 

pi ¼

1
1þδ1ð Þ

ti

P

s2n

vid� s � vics

max 2;Fti
c � nti

cs � wisð Þð Þ
if
P

t2n
xit ¼ 1;

� C otherwise:

(

In this formula, 1
1þδ1ð Þ

ti is used to account for the discount factor. The numerator (vid�s � vics) is used to favour blocks 
that can improve the second term of the objective function (14) the most. The denominator 

(max 2; Fti
c � P

ti
cs � wis

� �� �
)) is used to favour blocks that will not incur a shortage if removed from their current 

destination (will not increase the fifth term of the objective function (14)). Finally, the priority values of blocks that 
are not extracted in the current solution are set to a large negative value to avoid selecting them, as these blocks do not 
contribute to any term of the objective function (14).
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A.13. Empty one period (D13)
This method does not compute the priority values and does not necessarily select β blocks. It randomly selects one 
period and adds all the blocks extracted in that period to the list L (list of selected blocks). The motivation is to allow 
all destinations in a given period to be empty and completely remake the destination decisions (reconstruct the 
destination plans) with the repair method. By doing so, more opportunities for new block combinations in the 
different destinations are created.

A.14. Empty waste dump (D14)
In a given period and under a given scenario, some blocks might be sent to the waste dump while they can be sent to 
profitable destinations where they can be processed and generate revenue. This method aims to select such blocks to 
improve the solution. Let πis be a parameter equal to 1 if block i is sent to the waste dump under scenario s in the 
current solution, and 0 otherwise. Clearly, πis ¼ 0"s if iis not extracted in the current solution. The priority values are 
computed using the formula below, and the blocks are ranked in descending order of these values: 

pi ¼
X

s2S
πis αis � 1ð Þ Li � Ei þ 1ð Þ½ �

The term αis � 1ð Þ accounts for the number of the destinations to which block i can be sent under scenario s, 
excluding its current destination, while Li � Ei þ 1ð Þ accounts for the periods in which i can be extracted without 
violating the slope constraints, including its current period of extraction. The factor πis is used to avoid selecting 
blocks that are currently not in the waste dump under any scenario.

Annex B. Repair methods
Referring to Algorithms 1 and 2, the blocks in the list L, identified by the selected destroy method, are removed from 
the current solution x, resulting in an infeasible solution x� . This means that all the variables associated with the 
blocks that are not in L are fixed, and the remaining variables are ‘free’. One of the seven methods described below is 
used to reinsert each block in L in other feasible periods and/or destinations to obtain a new feasible solution x0; that 
is, to optimise the ‘free’ variables. The following notation is used. Given the solution to repair x� , Bt ¼

i 2 N : xt
i ¼ 1

� �
denotes the set of blocks extracted in period t. The set of blocks processed in destination d during 

period t under scenario s is denoted by Λt
ds ¼ i 2 N : yt

ids ¼ 1
� �

:

B.1. Random repair (R1)
This method considers one block i 2 L at a time, which is selected randomly, and sequentially chooses the period and 
the destinations in which i will be scheduled. This is done as follows: The method starts by identifying the set of 
feasible periods FP ið Þ in which i can be extracted without violating the slope constraints. In doing so, the 
predecessors and the successors of i that are in the list L are not accounted for. Then, one of the periods in FP ið Þ
is selected randomly, and i is scheduled to be extracted in that period. The next step is to decide in which destination i 
will be processed under each scenario, and again this is done randomly; i.e. under each scenario, i can be processed in 
any destination as long as it is an admissible destination. When all scenarios are considered, i is removed from L, 
another block is chosen, and the process is repeated until the list L is empty.

B.2. Greedy repair (R2)
This method is similar to the previous one in the sense that it considers blocks i 2 L one at a time and sequentially 
determines the period and the destinations for the selected block before considering another block, but, to this end, it 
uses selection criteria different from those used by R1 as explained below. To simplify the presentation, we denote by 

g Bt� �
¼
X

i2Bt

E ci½ �

1þ δ1ð Þ
t þ

1
S
X

s2S

p�

1þ δ2ð Þ
t maxðEt �

X

i2Bt

wis; 0Þ þ
pþ

1þ δ2ð Þ
t maxð

X

i2Bt

wis � Et; 0Þ

" #

(29) 

h Λt
ds

� �
¼
X

i2Λt
ds

vids

1þ δ1ð Þ
t �

q�d
1þ δ2ð Þ

t maxðFt
d �

X

i2Λt
ds

wis; 0Þ �
qþd

1þ δ2ð Þ
t maxð

X

i2Λt
ds

wis � Ft
d; 0Þ: (30) 

g Bt� �
is used to evaluate the cost of extracting a block i in period t accounting for all blocks that are already extracted 

in this period, whereas h Λt
ds

� �
is used to measure how profitable it is in scenario s and period t to process an 

additional block in destination d accounting for blocks that are already processed in d. Again, let FP ið Þ denote the set 
of feasible periods in which i can be extracted, considering only its predecessors and successors that are not in L. For 
each period t 2 FP ið Þ, the repair method R2 first uses function (29) to compute the cost of extracting i in period t: 
Δ1 i; tð Þ ¼ g Bt[ if g� �

� g Bt� �
. Then, it considers the scenarios sequentially and for each scenario, it finds, following 

a greedy approach, the destination in which i can be processed. For that, function (30) is used and the following is 
computed to measure how feasible and profitable it is to process i in d: Δ2 i; d; s; tð Þ ¼ h Δt

ds[
if g� �
� h Λt

ds
� �

if i is 
admissible to d under scenario s, and Λ2 i; d; s; tð Þ is set equal to a large negative value otherwise.
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Let d� i; s; tð Þ ¼ arg max
d2D

Δ2 i; d; s; tð Þ. Clearly, the maximum profit that one can expect if block i is extracted in 
period t is Δ i; tð Þ ¼ � Δ1 i; tð Þ þ 1

S
P

s2S
Δ2 i; d� i; s; tð Þ; s; tð Þ. Once all periods in FP ið Þ are considered, the period t� ¼

argmaxt2FP ið ÞΔ i; tð Þ is identified and block i is scheduled to be extracted in t� (i.e. it is included in the set Bt). Finally, 

for each scenario s, i is sent to destination d� i; s; tð Þ (i.e. it is included in the set Λt
d� i;s;tð Þs).

B.3. Capacity cautious repair (R3)
This method is very similar to the previous one except for the following differences:

(1) g Bt� �
and h Λt

ds
� �

are here defined by equations (31) and (32) below rather than (29) and (30) in order to select 
the periods/destinations that will leave the most residual capacity for forthcoming blocks. This is done to 
introduce some lookahead perspective when reinserting the blocks.

g Bt� �
¼

P
s2S
P

i2Bt wis

Et
(31) 

h Λt
ds

� �
¼

P
i2Λt

ds
wis

Ft
d

: (32) 

(2) Accordingly, d� i; s; tð Þ ¼ arg min
d2D

Δ2 i; d; s; tð Þ instead of d� i; s; tð Þ ¼ arg max
d2D

Δ2 i; d; s; tð Þ (i.e. the best destination 

for a block in a given scenario and period is the one having the smallest capacity utilisation).
(3) Δ i; tð Þis set equal to Δ1 i; tð Þ þ 1

S
P

s2S Ñ2 i; d� i; s; tð Þ; s; tð Þ and t� ¼ argmint2FP ið ÞΔ i; tð Þ:

B.4. MCFP repair (R4 and R5)
To repair the solution, this method combines the random repair heuristic (R1) and the MCFP heuristic described in 
Section 3.2. More specifically, it starts by assigning feasible periods to blocks in L as in R1; that is, for each block 
i 2 L, FP ið Þ is first identified, then i is included in Bt where t is chosen randomly in FP ið Þ. Once this step is 
completed, the destination plans for each period t that have been affected at the previous step are determined by 
solving the DPt described in 3.2. This is done by applying the MCFP heuristic on each scenario separately. When 
applying the MCFP heuristic, the decisions associated with the blocks that were not in L (i.e. blocks that were not 
selected by the destroy method) are fixed to their current values. Another alternative, which is more flexible and 
might lead to better quality solutions but at the expense of longer computational times, is to reconstruct the 
destination plan from scratch (i.e. none of the parts of the plan is fixed and all the decisions are to optimise). In 
this paper, we examine the two alternatives, which leads to two variants of the MCFP repair method. The variant that 
solves a partial destination problem (first alternative) is denoted by R4, while the variant that solves the full 
destination problem (second alternative) is denoted by R5. 

B.5. MIP repair (R6 and R7)
This method is very similar to the previous one. All the extraction decisions are made first before designing the 
destination plans. Again, the latter are determined by considering only periods that have been affected when making 
the extraction decisions, considering the scenarios separately. However, rather than using MCFP, a mixed-integer 
programming solver is used to find the optimal values of the variables yt

ids, f
t�
ds , and f tþ

ds that maximise the net present 
economic value to be generated from processing the blocks extracted in period t minus the total penalty costs of not 
satisfying the demands or exceeding the capacities of the different destinations during this period. Again, one can fix 
the binary variables yt

ids corresponding to the blocks i that were not selected by the destroy method to their current 
values, which results in a variant of the MIP repair method that we will denote by R6 as one can ‘free’ all variables, 
which gives yield to another variant of the MIP repair method denoted by R7.
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