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ABSTRACT
This paper overviews the simultaneous stochastic optimisation of mining 
complexes or mineral value chains where raw materials mined from 
mineral deposits in an area are transformed into a set of sellable products. 
The supply of materials extracted from available mines represents a major 
source of uncertainty and technical risk that needs to be managed, along 
with market demand. An overview of the main concepts, case studies and 
comparisons show how the approach manages risk and capitalises on 
synergies between the components of the mining complex and major 
differences from conventional methods. Results lead to strategic plans 
with larger amounts of metal produced from the same mineral resources, 
a substantially improved ability for operations to meet production fore-
casts, and a significantly higher net present value.
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1 Introduction

A mining complex or mineral value chain is an engineering system that manages the 
extraction of raw materials from a group of mineral deposits (mines) in a geographic region, 
followed by the treatment of the extracted materials through different processing facilities that 
are interconnected by various material handling and transportation methods. This system 
leads to sellable products delivered to various customers and/or the spot market, along with 
different types of waste materials that need to be managed. Underlying uncertainties (stochas-
ticity) relate to the quantity, quality and spatial distribution of the materials supplied from the 
mines, capital investment options, technical aspects (mining, processing, environmental), and 
the metal’s spot market prices. An example of a mining complex is shown in Figure 1. In this 
example, three mines share multiple downstream facilities including stockpiles, concentrators, 
leach pads, smelters, tailings, slag, and waste dumps. At the same time, the products 
generated, as well as the material handling and transportation processes, connect upstream 
mining activities with final customers and markets.

Conventional strategic or life-of-mine planning [1–3] considers and optimises each compo-
nent of a mining complex independently, an approach that ignores the synergies between 
various components, leading to sub-optimal plans, forecasts and evaluations. Early efforts to 
advance related approaches, concepts and technologies to jointly optimise different compo-
nents of a mining complex are introduced in Hoerger et al [4], showing the application at 
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Newmont’s Nevada operations. Their multi-period mixed integer programming model con-
siders downstream decisions in operations, including several mines, stockpiles and processing 
facilities, and takes advantage of the synergies between the related components, leading to 
considerable production improvements. Further efforts to increase the components and cap-
abilities of a mining complex to be integrated and simultaneously optimised are shown in Stone 
et al [5]; the authors present BHP’s optimisation framework, software Blasor, and applications 
in simultaneous optimising multi-pit operations with complex product requirements. Whittle 
[6,7] introduces the software Prober that was developed to perform a global optimisation of the 
main components of mining complexes based on an interactive approach. While these con-
stitute major developments and all case studies available document substantially improved 
performance when compared to the traditional optimisation approaches, they also have major 
limitations stemming from: (i) significant simplifications and assumptions made to reduce 
computational complexity, as well as (ii) the inability to deal with the inherent critical uncer-
tainties. Computational complexities are due to the exceptionally large size of mathematical 
programming optimisation formulations needed to address practical strategic mine production 
planning applications.

Simplifications and assumptions include pre-decided long-term schedules in the mines 
considered, the large-scale aggregation of mining blocks misrepresenting the selectivity of 
mined materials, the exclusion of parts of mining complexes, the inability to deal with non- 
linear relations, including stockpiles, the inability to integrate all interactive components, such 
as mineral processing plants and others. The additional major assumption that all previously 
mentioned approaches rely upon is that the mineral deposit model used as input is the actual 
deposit, as represented by an estimated orebody model [1]. The latter models, whether they are 
geostatistically estimated or not, misrepresent the in-situ spatial variability of pertinent geolo-
gical attributes of the materials extracted from the ground and, importantly, do not quantify the 
uncertainty of metal grades, material types and their quality, all leading to sub-optimal 
production forecasts [8–14].

The supply of materials extracted from mines in a mining complex represents a major source of 
uncertainty (or stochasticity) and technical risk that needs to be accounted for and managed in 
strategic mine planning (similarly to the case of individual mines [15]). The development of new 

Figure 1. Example of a mining complex/mineral value chain; materials flow from mines on the left to products delivered to 
customers on the right of the figure.
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digital technologies facilitates the simultaneous stochastic optimisation of mining complexes in 
a single optimisation model [16–30]. This advancement overcomes the major limitations of 
previous approaches noted above and adds substantial value. Simultaneously optimising all inter-
related components and aspects of a mining complex integrates production scheduling, blending, 
stockpiling, equipment capacities and related capital investments. It further includes the integration 
of non-linear transformations occurring in processing streams, waste management, the utilisation 
of processing streams, and, finally, the transportation of products to customers, as well as the 
assessment of market contract options. Resulting improvements to life-of-asset(s) strategic 
planning and valuation have been shown to: Markedly improve the reliability in a mining 
operation’s ability to meet production forecasts, lead to larger amounts of metal produced from 
the same mineral resource and a substantially higher net present value (NPV) than existing 
approaches. These are all a direct outcome of the ability of new smart technologies to capitalise 
on directly managing technical risk and synergies between the components of a mineral value 
chain. The present manuscript provides an overview of the above developments, starting from 
the general aspects of the simultaneous stochastic optimisation framework and continuing with 
a comprehensive presentation of main insights from case studies in different mining complexes, 
including comparisons to conventional industry optimisation practices.

In the following sections, firstly, the basic parts of the stochastic mathematical programing 
model considered herein are outlined and related concepts are elaborated upon. Subsequently, 
examples from applications are presented to demonstrate key practical aspects and contribu-
tions of the approaches discussed. Conclusions follow.

2 Method overview

The simultaneous stochastic optimisation of a mining complex – mineral value chain is out-
lined in this section, while the reader is referred to Goodfellow and Dimitrakopoulos [18,19] for 
detailed descriptions. Emphasis is placed on explaining the main conceptual differences 
between established modelling approaches, while briefly indicating efficient solution 
approaches to the corresponding exceptionally large optimisation problem.

2.1. Basic mathematical model

Consider that a mining complex integrates C components, as shown in the example in Figure 1 
(mines, stockpiles, processing streams, concentrators and plants, waste dumps, and so on); each 
component is denoted as i 2 C. There are A properties of the materials mined (metal, grade, 
tonnage, geometallurgy, and so on) tracked along the value chain and each one is denoted by 
a 2 A. S stands for the number of stochastically simulated scenarios (e.g. [31–34]) of the pertinent 
rock properties of the mineral deposits mined, while each scenario is s 2 S, and composed of 
mining blocks reflecting expected mining selectivity. Note that S may as well include commodity 
prices incorporating market uncertainty, when applicable. Production periods, t 2 T, are in years 
and the life-of-mining-complex optimised has T production years; the extraction sequence of 
blocks mined per year per mine are outputs of the optimisation process.

The optimisation approach developed is based on two-stage stochastic integer programming 
(SIP) detailed in Birge and Louveaux [35], which is a framework used in past approaches to life-of- 
mine planning optimisation of single mines [36–39]. The objective of the simultaneous optimisa-
tion is to maximise the net present value of products sold, whilst managing and deferring risk, as 
well as minimising deviations from production targets at different destinations in the value chain 
model. The objective function is: 
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(1) 

Part 1 of the objective function accounts for discounted net profit from the products generated by 
a mining complex. The term va;i;t;s stands for the value of a pertinent property a in a given scenario s, at 
period t at a component i of the mining complex, and pa;i;t is the related time-discounted revenue (or 
expense) generated, based on a given discount rate. Part 2 is used to manage and minimise deviations 
from various targets, and includes, mines, stockpiles, blending, processing, deleterious, elements, and 
so on. It is used to reduce risk in forecasts as well as risk deferral (geological risk discounting). 
ua;i;t;sand la;i;t;s represent the upwards and downwards deviations, respectively, from production 
requirements and targets for property a, at time t, for scenario s, and cþa;i;tandc�a;i;t are the cost (penalty) 
of deviation. This cost is used to defer the risk of not meeting production targets to later periods by 
using geological risk discounting factors [15,38]. Lastly, Part 3 includes K capital expenditure (CapEx) 
options, such as equipment purchase, infrastructure expansion and so on, where pk;t represents the 
discounted purchase price of the capital expenditure option k (k 2 K) and wk;t is the decision variable 
that defines the number of CapEx options k that are exercised in period t. For a detailed description of 
related constraints, including capacity, reserve and mining block access, destination policy, mine 
extraction, processing stream flow and others, please refer to Goodfellow and Dimitrakopoulos [18].

2.2. Mining aspects and conceptual differences from past approaches

To elaborate on the main concepts related to the simultaneous optimisation model discussed above, 
Figure 2 shows an example, which includes: two mines with the two related mineral deposits 
represented by different simulated scenarios, one of the existing processing streams of the related 
mineral value chain, and two customers for the product(s) generated from the processing stream. 
The example aims to stress that the proposed simultaneous stochastic optimisation with the 
objective function in (1) will output (i) the production schedule for each mine and the destination 
policies for the materials extracted from the mines; (ii) the choice of a processing stream is decided 
not when scheduling a mine’s production, but at the potential processing streams, and (iii) the value 
of products is decided at the customer level (again, not at the mine scheduling stage), where also 
joint supply and demand uncertainty can be accounted for. These are major differences from all the 
past approaches to mine planning optimisation. It is notable that, in this framework, unlike with all 
past strategic mine planning optimisation approaches, (a) no economic values of mining blocks are 
used for the scheduling process; financial assessments are done at the stage of products produced for 
different customers or the spot market or a combination of both, and all production costs of raw 
materials from mines to products are accounted for. In addition, (b) no pre-decided ‘optimal’ cut- 
off grades are needed as an input; the final schedules generated to maximise net present value for the 
value chain provide the optimal cut-offs. Furthermore, notable is (c) the ability to deal with the 
properties of the materials mined at different locations at the potential processing streams, while 
blending and destinations are decided. This allows for the optimisation process to deal not only 
with metal, tonnes and grades, but also with non-linearly behaving properties such as throughput 
and recovery, as well as geometallurgical properties [25,40,41], and so on. This provides 
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a substantially more effective framework to deal with critically important aspects in the perfor-
mance and, therefore, strategic planning and valuation of a mining complex, including the utilisa-
tion and operating modes of the various processing streams.

It is critically important to stress that, as Figure 2 shows, the uncertainty and variability of all 
pertinent aspects of the materials that flow through the value chain are quantified at any stage. In 
addition to the ability to quantify uncertainty and manage risk with respect to the supply of 
materials, the stochastic simultaneous optimisation approach allows the integration of commodity 
price (demand) uncertainty when product value is assessed at the customer level. An example is 
shown in Section 3.3.

2.3. Solution approaches

It is apparent that the size and computational requirements needed to apply the approach discussed 
herein in any real-world case study requires solving very large-scale mathematical models. For 
example, in order to provide a sense of the corresponding optimisation problem size, consider 
a mining complex with three mines, two ore processing streams, a stockpile and a waste dump, life of 
mines between 10 and 30 years, 15 to 20 simulated scenarios per mineral deposit for one attribute 
(grade) and an average deposit size of a few hundred thousand mining blocks; in such a case, 
scheduling decision variables will be in the order of 20 million. While such a case is common and 
certainly not at the most demanding level for the approach discussed herein, this size is greater than 
what any of the existing mathematical programming solvers can handle in a reasonable amount of 
time. Furthermore, the optimisation model discussed also incorporates non-linear constraints 
and belongs to the notoriously difficult class of mixed-integer non-linear programs. These 
intrinsic solution difficulties have led to new algorithmic developments. The most widely used 
solution methods have been metaheuristics, for they provide an efficient methodology with 

Figure 2. Example of a mining complex/mineral value chain and one of its material processing streams.
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a use that is not restricted by the size of the problem or by linearity. Related methods are 
presented in the references provided at the beginning of this section, while the reader who is 
interested on this topic is referred to Lamghari and Dimitrakopoulos [42–45], Gilani and 
Sattarvand [46], Paithankar et al [27], Fathollahzadeh et al [47], and others. In the examples 
presented in the following section, a multi-neighbourhood simulated annealing approach is 
used [18]. More specifically, the related algorithm uses three neighbourhoods. The first 
neighbourhood deals with the extraction sequence and is based on a constraint relaxation 
strategy. Slope constraints are dropped from the search space to create a larger space, and the 
neighbourhood structure involves changing the period in which a block is extracted. The 
selected neighbour solution is afterwards transformed into a feasible one by applying 
a repair heuristic that moves the predecessors or the successors of the selected block. 
The second and third neighbourhoods deal with the downstream processing streams by 
modifying either the destination of a cluster of blocks or the amount of material sent from 
one processor to another. Using multiple neighbourhoods along with constraint relaxation 
have proved an effective strategy that ensures both diversification and intensification and 
moves the search away from local optima.

Computational challenges also relate to the number of simulated scenarios of mineral 
deposits used. It has been documented [17] that, in a mining complex with a single mine and 
several processing streams, 10 to 15 simulations are sufficient to generate stable results; see for 
example Figure 3. This result repeats the findings of previous experiments [48] and is attributed 
to the related support-scale effect, given that several hundred to a few thousand mining blocks 
are eventually grouped to represent a year of production in the related mining schedules. Recent 
experiments further show that, in a mining complex that comprises two mines and 20 simula-
tions per mine (i.e. 400 combined scenarios), stable results will be generated when about 70, 
randomly chosen, of these scenarios are used, showing that strategies with respect to selecting 
different scenarios support improvements in computational efficiency.

3 Examples from applications and comparisons

This section elaborates on pertinent aspects of the method outlined in the previous section based on 
case studies at different mining complexes. General major aspects, comparisons and main differ-
ences with conventional approaches are first discussed, then applications dealing with specific 
topics, such as waste management, CapEx investments and the integration of joint supply and 
demand uncertainty, are visited.

Figure 3. Example showing the sensitivity of the NPV forecast to the number of simulated realisations used in the simultaneous 
optimisation of a mining complex (modified from [17]).
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3.1. General aspects of mining complex optimisation and comparisons

The first example presented in this section is from a nickel laterite mining complex that includes 
two deposits [19] and focusses on orebody material supply risk management and minimising 
deviations from the required production targets. The chemical elements of interest are nickel, 
silica, magnesia and iron, and five material types are considered, namely, bedrock, limonite, 
saprolite waste, low-grade saprolite and high-grade saprolite. Materials from the two mines are 
sent to intermediate stockpiles of the same capacity, three for low-grade saprolite and another three 
for high-grade saprolite materials; bedrock, limonite and saprolite waste are sent to the same waste 
dump. All intermediate stockpiles feed two homogenisation piles, each having a fixed capacity that 
then feed a pyrometallurgy processing plant. While maximising NPV, the simultaneous stochastic 
optimisation method aims to generate materials flow starting from the mines that meet the plant’s 
requirement of iron grade blending between 12% and 16%, the requirement that the feed must meet 
silica-to-magnesia ratio (SiO2:MgO) between 1.5 and 1.8 between 1.5 and 1.8, and the plant’s 
capacity requirements. Note that, for the study, all pertinent geological attributes of the two deposits 
(nickel, silica, magnesia and iron) are stochastically simulated [49], as needed. Figure 4 makes 
several comparisons. The top of the figure shows the plant’s feed over production periods in terms 
of SiO2:MgO ratio (left) and tonnage (right) from a production plan generated using conventional 
industry mine planning optimisation practices (estimated orebody models and deterministic 
optimisation, as noted in Section 1). The conventional forecast is in red, while the risk profiles of 
the same forecasts are shown (dark blue is the P50 with the related P10 and P90 in green; note that 
P10, P50 and P90 represent the 10%, 50% and 90% probability of obtaining values below the 

Figure 4. Nickel laterite mining complex: Plant feed SiO2:mgo ratio (left) and tonnage (right) for a conventional production plan 
and its risk profile (top), compared to the plant feed performance of the proposed simultaneous stochastic optimisation (bottom).
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corresponding forecast) and are generated by testing the performance of the conventional schedules 
against the geostatstically simulated scenarios of the materials extracted from the two mines. The 
risk profiles show that the SiO2:MgO ratio in several periods (e.g. 15 to 25, 30 to 35) will exceed the 
upper limit allowed, while the plan does not feed the plant up to year 12 with the tonnages of iron 
content expected. Contrary to these results, the bottom graphs in Figure 4 show that the method 
presented herein will meet expectations (see average, P10 and P90) for both SiO2:MgO ratio and 
tonnages of materials delivered to the plant, to the best of the information available at the time of 
the study. It should be noted that the two bottom right graphs in Figure 4 reflect the effect of Part 2 
in (1) that manages risk and minimises deviations from production targets and requirements.

While managing supply risk, as shown in the previous example, is a core aspect of the stochastic 
simultaneous optimisation, a case study at a copper-gold mining complex with various mines and 
processing streams documents further critically important features. Figure 5 depicts results aiming 
to provide a comparison between high-end conventional practices that are typically deterministic 

Figure 5. A copper-gold mining complex: Stochastic pit limits are larger than the deterministic (left); risk analysis of deterministic 
of heap leach tonnage shows targets will not be met (top right), while the stochastic solution will (middle right); total NPV of 
stochastic solution is 14.2% higher than the deterministic one (bottom right).
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(as noted before, a single estimated representation of the related mineral deposits is used along with 
deterministic mine planning optimisation) and the approach discussed herein. As also shown in the 
previous example, Figure 5 shows that risk analysis of conventional production forecasts documents 
that these forecasts will not be met (e.g. tonnage to processing streams in the top right part of the 
figure), while the corresponding forecasts for the proposed method indicates that they will be met 
(middle-right side of figure). Two major issues are also shown in Figure 5: (a) the NPV of the 
simultaneous stochastic optimisation of the mining complex leads to substantially higher NPV 
(14.2%), corresponding to a substantial increase in metal production, and (b) the optimal pit limit in 
the mine shown is not only physically different, but also larger (22%) than the conventional, which 
is one of the reasons that more metal from the same mineral deposit is recovered. It should be noted 
that these results are not exclusive to this case study; they have been consistently documented for 
a wide range of mining complexes that supply various commodities [23–28,50–54].

In the next example, the simultaneous stochastic optimisation framework for long-term mine 
planning is applied at an operating gold mining complex that consists of two open-pit mines, three 
external sources supplying additional materials, 11 stockpiles, three ore processing facilities (auto-
clave, oxide mill and leach pad) and one waste dump [55]. The quantification of uncertainty and 
variability associated with the diverse sources of material used by this mining complex include not 
only the pertinent attributes of the two mineral deposits, but also the existing stockpiles and 
external sources. To provide the required global uncertainty quantification for the materials used 
in this mining complex and for the pertinent elements from the two mines (Au, SS, CO3 and Corg) 
simulated using related methods [49], the existing stockpiles are geostatistically simulated using 
either collected samples assessing their quality and variability or are simulated using related 
production grade control data. The uncertainty of the material supplied by the three external 
sources is quantified using Monte Carlo simulations using the information available from previous 
production years. An important component of this mining complex is its autoclave, which is used in 
full capacity by blending materials from different sources, as required. Typically, blending require-
ments are satisfied by adding acid to sulphide ore to reduce the CO3 concentration and allow the 
SS/CO3 ratio to remain within the required range. Regarding this aspect, Figure 6 shows the risk 
profile of the acid comparison at the autoclave over the life-of-asset plan of this mining complex, 
which is generated by the simultaneous optimisation. The latter plan consistently meets the legally 

Figure 6. Risk profile for acid consumption (grey lines) below the maximum allowed by regulations (dark green line) for the 
stochasic optimisation production plan and P50 of the risk profile (red line) for the conventional deterministic long-term schedule 
(modified from [55]).
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required acid consumption limit, unlike the mine’s conventional long-term plan where the uncer-
tainty of the different sources of material is not considered (as the P50 of the corresponding risk 
profile shows).

In addition to the ability to meet important operational production requirements, the stochastic 
solution for the strategic production plan for this gold mining complex also considers issues of the 
physical aspects of related schedules. Figure 7 shows the practical life-of-mine schedule for two 
benches in one of the mines from the mining complex to demonstrate that the actual production 
schedules are physically very different. Finally, similar to the previously noted case studies, the 
stochastic optimisation approach discussed herein outperformed the conventional plan of the 
mining complex not only in terms of acid consumption at the autoclave and other material blending 
requirements, but also showed a significant increase in recoverable gold and NPV while managing 
risk and increasing the probabilities for achieving production targets.

The use of the simultaneous stochastic optimisation framework for strategic planning at a large 
copper–gold mining complex to integrate uncertainty regarding non-additive geometallurgical 
attributes, such as the semi-autogenous power index and bond work index, is detailed in Kumar 
and Dimitrakopoulos [25]. The related mining complex is composed of two mines, five crushers, 
two stockpiles, three mills, two leach pads and one waste dump. The main sellable product is 
copper, however, gold, silver and molybdenum are also produced. To ensure a consistent through-
put of material to comminution circuits and a reduction of energy consumption and related costs, 
material with different hardness properties must be combined. This requirement was handled by 
introducing constraints controlling the hard-soft ratio at the mills (geometallurgical targets). 
Furthermore, and as needed, in addition to grade and material types, the semi-autogenous power 
index and the bond work index are geostatistically simulated in order to integrate the hardness 
uncertainty of the processed material into the stochastic optimisation framework. Figure 8 shows an 
example of the hard/soft ratio and its related risk profile for one mill for the stochastic plan. 

Figure 7. Life-Of-Mine production schedule for two benches in one of the open-pit mines in the gold mining complex; stochastic 
solution shown at the top and the mines conventional deterministic plan at the bottom, where colours reflect years of production 
(modified from [55]).

10 R. DIMITRAKOPOULOS AND A. LAMGHARI



Compared to, and unlike the performance of the conventional plan, also shown in Figure 8, the 
stochastic one shows very small chances of deviation from the hard-soft ratio targets. In general, 
when compared to the conventional strategic production plan of the mining complex, the stochastic 
approach is shown to significantly reduce the risk of not meeting capacity and geometallurgical 
targets. Other substantial improvements are increases of 12.5% in additional copper, 22.9% in gold, 
32.4% silver and 34.7% additional molybdenum, leading to a 19.3% increase in NPV.

3.2. Addressing waste management issues

Waste management within the strategic mine planning and production scheduling process is a critical 
aspect of the related optimisation, in addition to the delivery of valuable products to the market. 
Within the simultaneous stochastic optimisation framework, the inclusion of uncertainty and varia-
bility in the pertinent properties of the materials mined and the waste produced both impacts and 
improves the life-of-asset planning, with respect to environmental and economic aspects. This is 
because the related mine production schedules (including blending, storage and disposal of waste 
material) directly manage waste and contribute to the reduction of remediation costs, site monitoring 
and further environmental impacts, thus improving operational sustainability. A recent study at 
a gold mining complex [56] considers material supply uncertainty based not only on gold, but also on 
co-simulated carbon and sulphur grades, which is used to then determine the neutralisation and acid 
generation potentials. The former potential relates to the quantity of carbonates that can reduce acid 
mine drainage potential, while the latter depends on the content of sulphates derived from pyrite. The 
materials mined contain both non-acid-generating and potentially acid-generating rock. Managing 
potentially acid-generating rock is critical in this mining complex, in order to avoid the production of 
harmful contaminants, minimise surface disturbance and to satisfy permitting constraints. The case 
study shows that simultaneous stochastic optimisation generates production plans and forecasts that 
balance the mineral processing facility requirements and waste management by simultaneously 
optimising the cut-off grade policy and considering uncertainty. A comparison of the results with 
the conventional life-of-asset production plan shows substantial improvements in terms of satisfying 
environmental, permitting and processing targets. The extraction rate of potentially acid-generating 
waste materials is obtained by optimising production scheduling that jointly considers waste 

Figure 8. An example of geometallurgical target forecasts (hard/soft ratio) for one mill for the stochastic and conventional plans 
at a copper–gold mining complex (modified from [25]).
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management, cut-off grades to be used, processing stream destinations and stockpiling options. 
Figure 9 shows that the stochastic approach leads to (a) 16% less waste production compared to 
the conventional mine plan, and (b) a 6% increase in the NPV, when compared to a conventional 
approach, while minimising the likelihood of deviating from production targets and ensuring 
environmental constraints are satisfied.

Tailings management at a gold mining complex with copper and silver by-products considering 
a capital expenditure (CapEx) investment for expanding its existing tailings storage facility, the 
main bottleneck in a potential extension of the asset’s life, is detailed in a case study presented by 
Saliba and Dimitrakopoulos [57]. The gold mining complex includes two open-pit mines, eight 
stockpiles, an autoclave processing facility that recovers metal from the sulphide ore, one non-acid 
generating waste dump and one tailing storage facility that handles potential acid-generating waste 
products. The simultaneous stochastic optimisation framework is employed to assess the option of 
expanding the tailings storage facility and to extend the production life of the mining complex, by 
optimising the scheduling of materials extraction from the two mines, destination policies and 
downstream material flow along with CapEx investment decisions. A core aspect in this case study, 
unlike the examples presented above, is the consideration of CapEx (Part 3 of (1)); notably, a tailings 
storage facility expansion or the construction of a new facility is a critical capital-intensive 
consideration and is in the order of hundreds of million dollars. Results show that accounting for 
the effects of material supply uncertainty and variability on the components of the related mineral 
value chain provides important results. Within the stochastic framework, an investment is proposed 
that increases the capacity of the tailings facility by 25% and leads to an overall 14% increase in gold 
production, positive cashflows in all production years and a 4% higher NPV than the simultaneous 
stochastic optimisation plan without expansion. The comparison also indicates a possibility for 
a longer mining complex production life, if a larger tailings facility is constructed. In addition, and 
as expected, there are major differences from the mine’s conventional long-term mining and 
reclamation plan. The stochastic framework documents a substantial upside in terms of metal 
produced (gold, copper and silver) and an improved utilisation of resources (open-pits, stockpiles, 
existing tailings facility), as well as two additional years of production prior to considering the 
tailings facility expansion. Figure 10 shows the tailings volume forecasts for different approaches 
considered.

Figure 9. Simultaneous stochastic optimisation results and corresponding risk profiles (black lines) compared to the conventional 
forecast (red dashed line) for cumulative waste production on the left, and net present value on the right (modified from [56]).
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3.3. Joint supply and demand uncertainty

Accounting for the joint supply (orebody) and demand (commodity price) uncertainties are 
additional aspects of the simultaneous stochastic optimisation framework, and they are based on 
the joint use of stochastic orebody and commodity price simulations [58], as Part 1 of (1) indicates. 
This is demonstrated in the strategic life-of-asset planning of a multi-pit, multi-stockpile, multi- 
processor gold mining complex with an exceptionally large number of operating constraints related 
to both capacities and complex geochemical material blending needs [59]. Figure 11 shows a graph 
from this case study presenting the cumulative NPV versus production years for both the strategic 
plan that considers only supply uncertainty, as well as the plan that considers the joint supply and 
demand uncertainty. The figure shows that (a) on average, the NPV forecasts that consider only the 
supply uncertainty and those that account for joint supply and demand uncertainty are comparable, 
with an over all difference of 3%. However, (b) the related risk profiles are different with the P10 to 
P90 range, and in the case of the joint uncertainty to be overall about double from that of 
considering only the supply uncertainty, reflecting the uncertainty in commodity prices.

The same study also investigates the cut-off grade decisions of the simultaneous stochastic 
optimisation approach that does not utilise the prior and deterministic cut-off grade optimisation 
[60–62] as input to production planning and scheduling, unlike the conventional approaches. The 

Figure 10. Cumulative tailings volume forecasts: (a) conventional production forecast (red) vs stochastic simultaneous optimi-
zaton (black; dotted lines represent P10/P90 of forecasts); (b) stochastic optimisation with CapEx (green) and without (black), 
while the expanded capacity is shown (dotted red); (modified from [57]).

Figure 11. A gold mining complex and NPV comparison between the strategic plan based on stochastic simultaneous 
optimisation accounting for only supply (orebody) uncertainty (in black lines) and joint supply and demand (commodity price) 
uncertainty (in green lines). (Modified from [59]).
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approach considers the actual value of generated products, the non-linear blending of materials 
mined, and the extraction sequences from the related mines, which subsequently provide the 
ability to calculate the truly optimal cut-off grades [63]. Figure 12 shows the output of the optimal 
cut-off grades for oxide materials that are to be sent to the mill, leach pad or waste in the mining 
complex. As seen in this figure, the case considering the supply uncertainty for oxide materials 
accounting for fluctuations in material availability and quality from one mining period to another 
generates the optimal production schedules and corresponding cut-off grades that maximise 
NPV. The results from the case considering the joint supply and demand uncertainty show the 
ability of the simultaneous stochastic optimisation approach to adapt the production schedules to 
the mine and to process additional material during periods of elevated price forecasts, and, at the 
same time, to be relatively conservative when commodity price drops become more prominent. 
As this example demonstrates, simultaneous stochastic optimisation can account for, manage and 
quantify risk, including commodity price fluctuations, which supports strategic planning and 
related decision making. Additional aspects and examples are available in [23,24].

4 Comments and conclusions

This paper overviews underlying components of a new advanced framework for the simultaneous 
optimisation of mining complexes under uncertainty, which aims to maximise shareholder value 
and manage risk intelligently, as well as address pertinent aspects of sustainability. To support 
strategic planning, the proposed framework optimises all the components of a mineral value 
chain, from mines to products, in an integrated fashion that capitalises on the synergies between 
the components of the mining complex. The approach deals with challenging technical issues 
due to uncertainty in the key parameters involved, its large-scale and computational needs, as 
well as the intricacies of the related data analytics and optimisation. Based on stochastic 
integer programming and efficient solutions through metaheuristics, the method described 
has been tested through several case studies in different mining complexes and commodities, 
and has been shown to consistently outperform conventional approaches for strategic 

Figure 12. Comparison of optimal cut-off grades from a gold mining complex considering supply uncertainty versus joint supply 
and demand uncertainty. (Modified from [59]).
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planning. As the examples presented herein also show, the proposed method (a) generates 
substantially higher NPV; (b) typically produces substantially more metal(s) from the same 
mineral deposits considered in the related studies; (c) delivers production forecasts with 
substantially improved reliability; (d) integrates core aspects of waste production, quality 
and management as part of production planning optimisation; and (e) can directly integrate 
the joint supply and demand uncertainty, unlike any other approach. These observations are 
due to the ability of the new smart digital technologies overviewed here to capitalise on the 
explicit management of technical risk and on the synergies between the integrated components 
of a mineral value chain in one mathematical model. Additionally, unlike with all past strategic 
mine planning optimisation approaches, no economic values of mining blocks are considered 
in the scheduling process of mining blocks in the mines of a mining complex. Financial 
assessments are not performed at the mine scheduling stage but when products are generated 
for different customers or the spot market or a combination of both, and all production costs 
of raw materials from mines to products are accounted for. Similarly, the choice of 
a processing stream is determined not when scheduling a mine’s production, but at the 
potential processing streams, while blending and destinations are decided. Finally, no pre- 
decided ‘optimal’ cut-off grades are used as inputs; the final schedules generated to maximise 
net present value for the value chain provide the optimal cut-offs.

As always, the framework of the simultaneous stochastic optimisation of mining complexes 
overviewed here can be further extended to advance several aspects related to strategic plan-
ning, ranging from advanced alternative operational modes, additional waste management and 
rehabilitation components, the interaction of strategic and operational production planning, 
advancing components for the transportation to client(s) and so on. Similarly, improving 
methods for the stochastic simulation of the properties of mineral deposits, such as new high- 
order simulations that have been shown to further improve results in mine production planning 
[52], need to be developed further [64]. Dealing with the inherent complexities of the optimisa-
tion problem, such as large sizes and non-linearity, is important. Consequently, approaches that 
integrate machine learning techniques for the effective and computationally efficient handling 
of the related optimisation problem [65] are further needed. Finally, It seems natural that the 
strategic mining complex optimisation framework is extended and adapted to address short- 
term planning aspects and requirements [66].
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